收藏 分销(赏)

八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc

上传人:s4****5z 文档编号:7410053 上传时间:2025-01-03 格式:DOC 页数:8 大小:563KB
下载 相关 举报
八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc_第1页
第1页 / 共8页
八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc_第2页
第2页 / 共8页
八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc_第3页
第3页 / 共8页
八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc_第4页
第4页 / 共8页
八年级数学下册 6.3为什么它们平行示范教案1 北师大版.doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、第四课时课 题6.3 为什么它们平行教学目标(一)教学知识点1.平行线的判定公理.2.平行线的判定定理.(二)能力训练要求1.通过经历探索平行线的判定方法的过程,发展学生的逻辑推理能力.2.理解和掌握平行线的判定公理及两个判定定理.3.掌握应用数学语言表示平行线的判定公理及定理,逐步掌握规范的推理论证格式.(三)情感与价值观要求通过学生画图、讨论、推理等活动,给学生渗透化归思想和分类思想.教学重点平行线的判定定理、公理.教学难点推理过程的规范化表达.教学方法尝试指导、引导发现与讨论相结合.教具准备投影片五张第一张:定理(记作投影片6.3 A)第二张:议一议(记作投影片6.3 B)第三张:定理(

2、记作投影片6.3 C)第四张:想一想(记作投影片6.3 D)第五张:小结(记作投影片6.3 E)教学过程.巧设现实情境,引入新课师前面我们探索过直线平行的条件.大家来想一想:两条直线在什么情况下互相平行呢?生甲在同一平面内,不相交的两条直线就叫做平行线.生乙两条直线都和第三条直线平行,则这两条直线互相平行.生丙同位角相等,两直线平行.内错角相等,两直线平行.同旁内角互补,两直线平行.师很好.这些判定方法都是我们经过观察、操作、推理、交流等活动得到的.上节课我们谈到了要证实一个命题是真命题.除公理、定义外,其他真命题都需要通过推理的方法证实.我们知道:“在同一平面内,不相交的两条直线叫做平行线”

3、是定义.“两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行”是公理.那其他的三个真命题如何证实呢?这节课我们就来探讨第三节:为什么它们平行.讲授新课师看命题(出示投影片6.3 A)两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.师这是一个文字证明题,需要先把命题的文字语言转化成几何图形和符号语言.所以根据题意,可以把这个文字证明题转化为下列形式:图612如图612,已知,1和2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:ab.那如何证明这个题呢?我们来分析分析.师生共析要证明直线a与b平行,可以想到应用平行线的判定公理来证明.这时从图中可以知道:1与3是

4、同位角,所以只需证明1=3,则a与b即平行.因为从图中可知2与3组成一个平角,即2+3=180,所以:3=1802.又因为已知条件中有2与1互补,即:2+1=180,所以1=1802,因此由等量代换可以知道:1=3.师好.下面我们来书写推理过程,大家口述,老师来书写.(在书写的同时说明:符号“”读作“因为”,“”读作“所以”)证明:1与2互补(已知)1+2=180(互补的定义)1+2=1801=1802(等式的性质)3+2=180(1平角=180)3=1802(等式的性质)1=1802,3=18021=3(等量代换)1=3ab(同位角相等,两直线平行)这样我们经过推理的过程证明了一个命题是真命

5、题,我们把这个真命题称为:直线平行的判定定理.这一定理可简单地写成:同旁内角互补,两直线平行.注意:(1)已给的公理,定义和已经证明的定理以后都可以作为依据.用来证明新定理.(2)方括号内的“1+2=180”等,就是上面刚刚得到的“1+2=180”,在这种情况下,方括号内的这一步可以省略.(3)证明中的每一步推理都要有根据,不能“想当然”.这些根据,可以是已知条件,也可以是定义、公理,已经学过的定理.在初学证明时,要求把根据写在每一步推理后面的括号内.好,下面大家来议一议(出示投影片6.3 B)小明用下面的方法作出了平行线,你认为他的作法对吗?为什么?图613图614生我认为他的作法对.他的作

6、法可用图614来表示:CFE=45,BEF=45.因为BEF与FEA组成一个平角,所以FEA=180BEF=18045=135.而CFE与FEA是同旁内角.且这两个角的和为180,因此可知:CDAB.师很好.从图中可知:CFE与FEB是内错角.因此可知:“内错角相等,两直线平行”是真命题.下面我们来用规范的语言书写这个真命题的证明过程.图615师生共析已知,如图615,1和2是直线a、b被直线c截出的内错角,且1=2.求证:ab证明:1=2(已知)1+3=180(1平角=180)2+3=180(等量代换)2与3互补(互补的定义)ab(同旁内角互补,两直线平行).这样我们就又得到了直线平行的另一

7、个判定定理:(出示投影片6.3 C)两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.这一定理可以简单说成:内错角相等,两直线平行.师刚才我们是应用判定定理“同旁内角互补,两直线平行”来证明这一定理的.下面大家来想一想(出示投影片6.3 D)借助“同位角相等,两直线平行”这一公理,你还能证明哪些熟悉的结论呢?生甲已知,如图616,直线ac,bc.求证:ab.图616证明:ac,bc(已知)1=902=90(垂直的定义)1=2(等量代换)ba(同位角相等,两直线平行)生乙由此可以得到:“如果两条直线都和第三条直线垂直,那么这两条直线平行”的结论.师同学们讨论得真棒.下面我们通过练习来

8、熟悉掌握直线平行的判定定理.课堂练习(一)课本P190随堂练习1.蜂房的底部由三个全等的四边形围成,每个四边形的形状如图617所示,其中=10928,=7032,试确定这三个四边形的形状,并说明你的理由.图617解:这三个四边形的形状是平行四边形.理由是:=10928=7032(已知)+=180(等式的性质)ABCD,ADBC(同旁内角互补,两直线平行)四边形ABCD是平行四边形(平行四边形的定义)(二)看课本P188190,然后小结.课时小结这节课我们主要探讨了平行线的判定定理的证明.同学们来归纳一下完成下表(出示投影片6.3 E)由角的大小关系来证两直线平行的方法,再一次体现了“数”与“形

9、”的关系;而应用这些公理、定理时,必须能在图形中准确地识别出有关的角.注意:1.证明语言的规范化.2.推理过程要有依据.3.“两条直线都和第三条直线平行,这两条直线互相平行”这个真命题以后证.课后作业(一)课本P191习题6.4 1、2(二)1.预习内容P1921942.预习提纲(1)直线平行的性质如何证明?(2)总结归纳证明的一般步骤.活动与探究1.你能用圆规和直尺作出两条平行线吗?能证明你的作法吗?过程通过这个活动,一来复习用尺规作图,二来熟悉掌握证明的步骤.图618结果如图618所示.用圆规和直尺能作出两条平行线.因为在作图中,作=.而与是同位角.由“同位角相等,两直线平行”可知:ab.

10、还可以作内错角,即:作一个角等于已知角,使所作的角与是内错角即可.板书设计6.3 为什么它们平行一、平行线的判定方法1.公理:同位角相等,两直线平行.2.定理:同旁内角互补,两直线平行.图619已知:如图619,1和2是直线a、b被直线c截出的同旁内角,且1与2互补,求证:ab.证明:1与2互补(已知)1+2=180(互补的定义)1=1802(等式的性质)3+2=180(1平角=180)3=1802(等式的性质)1=3(等量代换)ab(同位角相等,两直线平行)3.定理:内错角相等,两直线平行.图620已知,如图620,1和2是直线a、b被直线c截出的内错角.且1=2.求证ab.二、课堂练习三、课时小结四、课后作业

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服