1、线段的垂直平分线教学目标:1、经历探索、猜测、证明的过程,进一步发展学生的推理证明意识和能力。2、能够证明线段垂直平分线的性质定理、判定定理及其相关结论。3、能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。教学过程:我们曾利用折纸的办法得到:线段垂直平分线上的点到这条线段两个端点的距离睛等,你能证明这一结论吗?定理:线段垂直平分线上的点到这条线段两个端点的距离相等。已知:如图,直线MNAB,垂足是C,且AC=BC,P是MN上的任意一点。求证:PA=PB。证明:MNAB,PCA=PCB=90AC=BC,PC=PCPCAPCB(SAS)PA=PB(全等三角形的对
2、应边相等)想一想,你能写出上面这个定理的逆合题吗?它是真命题吗?如果是请证明:定理 到一条线段两个端点距离相等的点,在这条线段的垂直平分线上。(利用等腰三角形三线合一)做一做用尺规作线段的垂直平分线已知:线段AB 求作:线段AB的垂直平分线。作法:1、分别以点A和B为圆心,以大于AB的长为半径作弧,两弧相交于点C和D,2、作直线CD。直线CD就是线段AB的垂直平分线。请你说明CD为什么是AB的垂直平分线,并与同伴进行交流。因为直线CD与线段AB的交点就是AB的中点,所以我们也用这种方法作线段的中点。随堂练习:P26作业:P27,1、2、3、教学后记:(第二课时)教学目标:1、经历探索、猜测、证
3、明的过程,进一步发展学生的推理证明意识和能力。2、能够证明线段垂直平分线的性质定理、判定定理及其相关结论。3、能够利用尺规作已知线段的垂直平分线;已知底边及底边上的高,能利用尺规作出等腰三角形。教学过程:引入: 剪一个三角形纸片,通过折叠找出每条边的垂直平分线,观察这三条垂直平分线,你发现了什么?当利用尺规作出三角形三条边的垂直平分线时,你是否也发现了同样的结论?定理:三角形三边的垂直平分线相交于一点,并且这一点到三个顶点的距离相等。证明:在ABC中,设AB、BC的垂直平分线相交于点P,连接AP、BP、CP,点P在线段AB的垂直平分线上PA=PB(线段垂直平分线上的点到这条线段两个端点距离相等
4、)同理:PB=PCPA=PC点P在AC的垂直平分线上(到一条线段两个端点距离相等的点,在这条线段的垂直平分线上)。AB,BC,AC的垂直平分线相交于点P。议一议:1、已知三角形的一条边及这条边上的高,你能作出三角形吗?如果能,能作几个?所作的三角形都全等吗?(这样的三角形能作出无数多个,它们不都全等)2、已知等腰三角形底边及底边上的高,你能用尺规作出等腰三角形吗?能作几个?(满足条件的等腰三角形可和出两个,分加位于已知边的两侧,它们全等)。做一做:已知底边上的高,求作等腰三角形。已知:线段a、b求作:ABC,使AB=AC,且BC=a,高AD=h.作法:(1)作线段BC=a(如图);(2)作线段BC的垂直平分线L,交BC于点D,(3)在L上作线段DA,使DA=h(4)连接AB,AC 作业: 6.教学后记: