1、6.3 实数(第1课时)教学目标1.了解无理数和实数的概念.2.知道实数与数轴上的点一一对应,有序实数对与平面上的点一一对应.3.了解数的范围由有理数扩大到实数后,一些概念、运算等的一致性及其发展变化.教学重点实数的运算.教学难点实数的运算.教学内容一、导入新课使用计算器计算,把下列有理数写成小数的形式,你有什么发现?3,.二、新课教学我们发现,上面的有理数都可以写成有限小数或者无限循环小数的形式,即33.0;0.6;5.875;0.81;1.2;0.5.归纳:任何一个有理数都可以写成有限小数或无限循环小数的形式.反过来,任何有限小数或无限循环小数也都是有理数.无限不循环小数又叫无理数,=3.
2、1415926也是无理数;有理数和无理数统称为实数.由于非0有理数和无理数都有正负之分,实数也有正负之分,所以实数还可以按大小分类如下:探究:如下图所示,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达点O,点O对应的数是多少?从图中可以看出,OO的长是这个圆的周长,所以点O的对应数是.这样,无理数可以用数轴上的点表示出来.事实上,每一个无理数都可以用数轴上的一个点表示出来,这就是说,数轴上的点有些表示有理数,有些表示无理数,当从有理数扩充到实数以后,实数与数轴上的点就是一一对应的,即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都是表示一个实数与有理数一样,对于数轴上的任意两个点,右边的点所表示的实数总比左边的点表示的实数大.数a的相反数是a,这里a表示任意一个实数.一个正实数的绝对值是本身;一个负实数的绝对值是它的相反数;0的绝对值是0.三、课堂练习四、课堂小结1.什么叫做无理数?2.什么叫做有理数?3.有理数和数轴上的点一一对应吗?4.无理数和数轴上的点一一对应吗?5.实数和数轴上的点一一对应吗?五、布置作业 教学反思: