1、一元一次方程 3.应用一元一次方程水箱变高了一、学生起点分析本节课涉及到图形问题,关键是让学生抓住形变过程中的不变量,对于基本图形的体积、面积、周长等公式,学生已在小学系统学习,如果遗忘或混淆,可做适当复习.二、教学任务分析本节学习列方程解应用题,其关键还是寻找实际问题中的等量关系.在实际生活中经常会遇到类似本节情境的问题,最关键的是抓住变化中的不变量,从而设出未知数,根据等量关系列出方程.教学时,应鼓励学生独立思考,发现等量关系.特别是对例1,应让学生根据生活经验和原有基础分组独立完成,然后请各小组汇报:四个小问题的解答情况,最后组织学生展开讨论:解这道题的关键是什么?从解这道题中你有哪些收
2、获和体验?因此,本节教材的处理策略是:展现问题情境提出问题分析数量关系和等量关系列出方程,解方程检验解得合理性.三、教学目标借助立体及平面图形学会分析复杂问题中的数量关系和等量关系,体会直接或间接设未知数的解题思路,从而建立方程,解决实际问题.通过分析图形问题中的数量关系体会方程模型的作用,进一步提高学生分析问题、解决问题、敢于提出问题的能力.通过对实际问题的探讨,使学生在动手独立思考、方程意识的过程中,进一步体会数学应用的价值,鼓励学生大胆质疑,激发学生的好奇心和主动学习的欲望.四、教学过程设计本节课设计了六个教学环节:第一环节:创设情境,引入新课;第二环节:运用情境,解决问题;第三环节:操
3、作实践,发现规律;第四环节:体验数学模型第五环节:课堂小结;第六环节:布置作业.环节一:创设情境,引入新课活动内容:情境:先用一块橡皮泥捏出一个“瘦长”的圆柱体,然后再让这个“瘦长”的圆柱“变矮”,变成一个又矮又胖的圆柱,请思考下列几个问题:在你操作的过程中,圆柱由“高”变“低”,圆柱的底面直径变了没有?圆柱的高呢?在这个变化过程中,是否有不变的量?是什么没变?活动目的:让学生在愉快地玩的过程中体会等体积变化的现象中蕴涵的不变量.同时分析出不变量与变量间的等量关系.活动的实际效果: 学生能够感受到:两瓶形状不一样的矿泉水体积是一样的,手里的橡皮泥在手压前和手压后发生了变化,变胖了,变矮了.即高
4、度和底面半径发生了改变,但手压前后体积不变,重量不变.环节二:运用情景,解决问题活动内容:张师傅将一个底面直径为20厘米、高为9厘米的“矮胖”形圆柱锻压成底面直径为10厘米的“瘦长”形圆柱.假设在张师傅锻压过程中圆柱的体积保持不变,那么圆柱的高变成了多少?(在这个环节中可安排两组同桌分别上黑板合作完成.并把思路分析给大家.可给每个四人小组发一张表格,让学生试着通过填写表格寻找等量关系.)活动目的:将上述环节中体会到的形之间的变与不变的关系,量之间的等量关系抽象成数学问题,利用前几节的解方程方法解决实际问题.活动的实际效果:学生解答过程布列方程很顺利,很多学生使用了下面的表格来帮助分析.锻压前锻
5、压后底面半径cmcm高9cmxcm体积 9 x由实验操作环节知“锻压前的体积锻压后的体积”,从而得出方程.解:设锻压后的圆柱的高为xcm,由题意的9x,解之,得 x=36.黑板上两组学生中有一组学生将的值取3.14,带入方程,教师应在此给予指导,不要早说,现在恰到好处!此类题目中的值由等式的基本性质就可以约去,无须带具体值;若题目中的值约不掉,也要看题目中对近似数有什么要求,再确定值取到什么精确程度.环节三:操作实践,发现规律活动内容:学生用预先准备好的40厘米长的铁丝,以小组作出不同形状的长方形,通过测量边长,近似求出长方形的面积,比较小组内四个同学的计算结果,你发现了什么?活动目的:我们知
6、道:学生自己亲手经历操作后的感受会更深刻.所以设置此环节,让学生手、眼、脑几个感官并用,在操作中体会,在计算中验证,在变化中发现.这样能培养学生经过观察、分析、归纳、总结等数学学习活动中发现数学思想与数学方法,也同时让学生感悟复杂的问题中的道理就在我们玩的过程中,就在我们的生活中.活动的实际效果:长(cm)宽(cm)面积(cm)长方形115575长方形213.56.486.4长方形312.87.393.44长方形411.68.497.44长方形511999长方形61010100由学生的实际操作得到的近似值已反映出来一个很好的规律.学生:由操作过程,同学们作出的长方形形状有“胖”有“瘦”,反映到
7、表中数据为:当长方形的周长一定,它的长逐渐变短,宽随之逐渐变长,面积在逐渐变大.当长与宽一样长时面积最大.过程感悟:不要怕完不成进度,这个过程进行完成后,学生对课本设置相关内容就剩下规范解题过程了,学生的理解远比直接先讲教材的例题效果要好的多.(此处教师可用几何画板来完成)环节四:练一练,体验数学模型活动内容:课本例题例1:一根长为10米的铁丝围成一个长方形.若该长方形的长比宽多1.4米.此时长方形的长和宽各为多少米?若该长方形的长比宽多0.8米,此时长方形的长和宽各为多少米?它围成的长方形的面积与(1)中所围成长方形相比,面积有什么变化?若该长方形的长与宽相等,即围成一个正方形,那么正方形的
8、边长是多少?它围成的长方形的面积与(2)中相比,又有什么变化?如果把这根长为10米的铁丝围成一个圆,这个圆的半径是多少?面积是多少?请思考:解此例题的关键是什么?通过此题你有哪些收获和体验?你能试着设计表格解决这个问题吗?活动的实际效果:因为有了环节三的铺垫,有效地分解难点,学生掌握很好.完整的解题过程留成课后作业.环节五:课堂小结通过对“水箱变高了”的了解,我们知道“锻压前体积锻压后体积”,“变形前周长等于变形后周长”是解决此类问题的关键,其中也蕴涵了许多变与不变的辩证的思想.遇到较为复杂的实际问题时,我们可以借助表格分析问题中的等量关系,借此列出方程,并进行方程解的检验.学习中要善于将复杂
9、问题简单化、生活化,再由实际背景抽象出数学模型,从而解决实际问题.环节六:布置作业P142 随堂练习 习题5.6思考:地面上钉着用一根彩绳围成的直角三角形.如果将直角三角形锐角顶点的一个钉子去掉,并将这条彩绳钉成一个长方形,则所钉长方形的长,宽各是多少?面积是多少?五、教学反思1.创造性地使用教材.本节课的引入新颖自然,通过实验,使学生对课题有了初步的认识,并通过学生对实验的观察,发现了在物体形状变化时的不变量,从而为列方程找等量关系作了铺垫.环节2中的表格发给每个小组,为增强小组讨论结果的展示起到了较好的作用.环节3中通过让学生自己设计表格为讨论的得出起到辅助作用.2.相信学生并为学生提供充分展示自己的机会本节课的设计中,通过学生多次的动手操作活动,引导学生进行探索,使学生确实是在旧知识的基础上探求新内容,探索的过程是没有难度的任何学生都