收藏 分销(赏)

-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc

上传人:s4****5z 文档编号:7403025 上传时间:2025-01-02 格式:DOC 页数:11 大小:271.50KB
下载 相关 举报
-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc_第1页
第1页 / 共11页
-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc_第2页
第2页 / 共11页
-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc_第3页
第3页 / 共11页
-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc_第4页
第4页 / 共11页
-七年级数学上册 5.2 平行线教学设计 (新版)华东师大版-(新版)华东师大版初中七年级上册数学教案.doc_第5页
第5页 / 共11页
点击查看更多>>
资源描述

1、5.2平行线课程标准分析本节主要让学生会画平行线,理解平行线的基本性质,会利用平行线的三个特征和三个识别方法解决有关平行线的问题,会根据图形中的已知条件,通过简单说理,得出欲求结果.经历观察、操作、推理、交流等活动,体验利用操作、归纳获得数学结论的过程,进一步发展空间想象、推理能力和有条理表达的能力.教材分析1.地位与作用:平行线与相交线构成了同一平面内两条直线的基本位置关系,在前面的学习中,学生已认识了角、相交线及相交线所成的角、垂直,积累了初步的数学活动经验.教材通过设置观察、操作等探索活动,按照先“认识平行线,再探索平行线的条件,最后探索平行线的特征”的顺序呈现相关内容,在带领学生探索性

2、质和解决问题的过程中,以直观认识为基础,训练学生进行简单说理,加深对平行概念的理解,并学会借助平行解决一些简单的实际问题,进一步发展学生的空间观念.2.重点与难点:本节的重点是平行线的定义,过直线外一点作已知直线的平行线的唯一性及平行线的识别方法;难点是利用平行线的识别方法进行计算或说明.教法分析直观感知,操作确认,让学生通过实例认识与平行线有关的一些知识.要让学生自己动手经过已知直线外一点画已知直线的平行线,体会到经过已知直线外一点有且只有一条直线与已知直线平行.教材通过三角尺的平移得出只要保持同位角相等,画出的直线就平行于已知直线,从而引出了平行线的识别方法:同位角相等,两直线平行;然后通

3、过说理,使学生了解其他两种判定方法.在教学中应淡化平行线的三个识别方法的逻辑关系,使学生能灵活地利用平行线的三个识别方法解决问题.同样,在教学中,也应淡化平行线的三个特征的逻辑关系,使学生能灵活地利用平行线的三个特征解决问题.在本节的教学中,应继续对学生进行初步的数学语言的训练,使学生能用数学语言叙述直线的平行关系,并注意平行符号的使用,应注意渗透逻辑推理的思想.在教学中还应注意渗透平移的思想,使学生能知道图形经过平移以后的位置,并能画出平移以后的图形.学法分析平行线的识别本质就是同位角、内错角、同旁内角的识别,不要把平行线的识别与平行线的特征混淆.平行线的识别是指在不知道是不是平行线的情况下

4、,识别是不是平行线,而平行线的特征是指在知道是平行线的情况下,看与平行线有关的角的关系.在本节的学习中注意分类与对比学习,如平行线的定义,用到在同一平面内两直线位置关系的分类,学习平行线的识别和特征时注意对比理解以免混淆.5.2.1平行线【教学目标】知识与技能感受平行线的概念,理解平行公理,能作出已知直线的平行线.过程与方法通过观察、交流、探索等活动获取知识,在具体操作活动中了解平行线的有关性质.情感态度与价值观丰富和发展自己的数学活动经历和体验,感受数学图形世界的丰富多彩.【教学重难点】重点:平行线的概念和平行公理.难点:用几何语言描述作图过程.【教学过程】一、创设情境,引入新课设计意图:创

5、设多种有关平行的现实情境,激发学生的学习兴趣,让他们体会数学知识与现实生活的联系,掀起他们探究的欲望.教师课件展示学生熟悉的有关平行线的现实情境,让学生观察:线、线与线的关系.如人行道、高压电线、百米跑道问题:这些线之间呈现怎样的位置关系?学生积极思考,观察后踊跃发言.二、新知探索设计意图:在让学生动手操作画平行线的过程中加深对平行线的理解,培养学生主动参与合作交流的意识,提高观察、分析、概括和抽象能力,培养学生的动手能力,引导学生探索平行线的性质.1.教师板书课题,并说明本节课继续探讨现实生活中的平行现象,让学生给出平行的定义.一部分学生能回答出“不相交的两直线”而遗漏“在同一平面内”,教师

6、此处应适当放开,让学生结合现实生活中的情景讨论“在同一平面内”的重要性.教师出示问题:在教学中找平行线?学生讨论,组内交流,最后派代表发表见解.师:生活中这么多平行,如何表示它们?如何画平行线?从而引出平行线的表示符号“”.2.画平行线教师让学生拿出方格纸,画出平行线,并进行组内交流.总结画平行线的方法:一靠、二落、三推、四画.为了让学生印象深刻,让学生板演,其余学生集中演示,体会.3.平行线的性质师:让学生拿出预制教具.(一块泡沫塑料上一根固定的木条和两根一端固定的木条)问题:何种情形下,活动的木条与固定的木条平行?学生一边活动木条,一边思考,用自己的语言叙述:只有一种情形.教师总结:经过直

7、线外一点,有且只有一条直线与这条直线平行.进一步提问:若两根活动木条都与固定的木条平行,这两根活动木条有什么关系?学生经过讨论思考后,体会平行线的性质并积极发言.得出:如果两条直线都和第三条直线平行,那么这两条直线也互相平行.三、巩固练习设计意图:通过练习,巩固对平行线的认识,熟悉做已知直线的平行线的方法,达到学以致用的目的.1.如图,四边形ABCD和四边形AFCE都是平行四边形,点E、F分别在CD、AB上,则图中平行线的组数是()A.2组B.3组C.4组D.5组2.如图,你能用学过的方法判断a、b这两条直线的位置关系吗?(1)过直线外一点A画直线l的平行线;(2)找出图中所有的平行线,并用“

8、”表示.四、课堂小结设计意图:由练习过渡到小结中,让学生再次体会,知识来自于实践中,反过来又指导实践,初步体验知识的系统性和完整性.小结:本课你从现实情境中了解了什么知识?对你获取的信息说说你的反思.五、课后作业1.如图所示,图中哪些线段是互相平行的?把它们表示出来.【答案】线段ae,线段bd,线段cf.2.已知:D是AOB内部一点,如图,过D作DEAO,作DFBO分别交OA、OB于F、E,画出图形,并说明四边形DEOF是什么图形?【答案】画图如图所示:四边形DEOF是平行四边形.3.如图所示,直线AB、CD是一条河的两岸,并且ABCD,点E为直线AB、CD外一点,现想过点E作CD的平行线,则

9、只需过点E作河岸AB的平行线即可,其理由是什么?【答案】理由是(1)过直线外一点有且只有一条直线与已知直线平行.(2)如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【板书设计】一、创设情境,导入新课二、新知探索三、巩固练习四、课堂小结五、课后作业5.2.2平行线的判定【教学目标】知识与技能使学生认识平行线的识别法,能灵活地利用平行线的三个识别法解决一些简单的问题.过程与方法经历平行线三种识别方法的发现过程,让学生通过直观感知,操作确认等实践活动,加强对图形的认识和感受.情感态度与价值观通过实地观测建筑物,让学生体会数学之美,对学生进行美学教育,渗透数学源于实践又作用于实践的辩证唯物

10、主义观点.【教学重难点】重点:平行线的三种识别方法.难点:运用三种识别方法进行简单的推理.【教学过程】一、提出问题,创设情境设计意图:通过巧妙的设置问题,引导学生思考,既复习旧知识,做好新知识学习的铺垫,也不断激活学生思维,生成新问题,引起认知冲突,从而自然引入新课.1.复习提问:什么叫平行线?引导学生注意在同一平面内这一条件.2.教师出示多媒体(图形显示,教师口述内容)在现实生活中,有不少平行的例子.例如:我们学校建筑物上就有平行线,上图是我们学校的校道对应的几何图形,我们已分组测量了、的度数,请几个小组同学说说测量的结果,老师告诉你:根据=,可得出校道中两段笔直的部分是平行的,想知道为什么

11、吗?带着这个问题,我们来学习“平行线的识别”.(板书课题)二、动手实验,发现新知设计意图:在实现教学活动的过程中,使实际问题与学生生活密切联系,学生有较好的参与意识和学习兴趣,随着教师问题的提出而不断进行更深入的思考,设计的动手实验以教材为基础,实现了让学生通过动手操作,在变化中感受角的大小变化与直线位置关系的联系,实现了由感性到理性的上升.师生共同操作,经过直线外一点画已知直线的平行线.三角尺沿着直尺的方向由原来的位置移到另一个位置,角在平移前的位置与平移后的位置构成一对同位角,其大小不变,因此,只要保持同位角相等,画出的直线就平行于已知直线.(合作、交流讨论后得出)两条直线被第三条直线所截

12、,如果同位角相等,那么这两直线平行.(同位角相等,两直线平行)例如:如图,直线a、b被直线l所截,如果1=3,那么ab.(交流后得出)因为1=3(已知),2=3(对顶角相等),所以1=2,ab.(同位角相等,两直线平行)结论:内错角相等,两直线平行.三、运用新知设计意图:及时训练是巩固知识的必要手段,练习题的选择要为教学目标的实现服务,通过学生的练习,通过巩固了上面得出的平行线的两种识别法;又在学生的自主探究中,得出平行线的第三种识别方法,实现了在练中学,在学中练的统一.教师出示如图,直线a、b被直线l所截,已知1=115,2=115,那么ab吗?为什么?学生思考后根据所学知识做出解答.变式训

13、练:若在以上问题中,1=115,3=65,那么ab吗?为什么?学生交流,讨论得出:同旁内角互补,两直线平行.如图,在四边形ABCD中,已知B=60,C=120,AB与CD平行吗?AD与BC平行吗?教师让学生先独立思考,然后再交流,完成对以上题目的解答.注意引导学生的推理过程,步骤的逻辑性.四、课堂小结设计意图:学生在一节课积极、热烈的探究、合作学习之余,需要有一点时间静下心来默默地反思自己,这是对知识沉淀、吸收的过程,通过生生、师生的交流,形成完整的知识结构.师:平行线识别的几种方法是什么?通过今天的学习,你想进一步探究的问题是什么?五、课后作业1.如图,1=2,3=4,试问EF是否与GH平行

14、?【答案】因为1=2(已知),又因为CGE=2(对顶角相等),所以1=CGE(等量代换),又因为3=4(已知),所以3+1=4+CGE,即MEF=EGH,所以EFGH(同位角相等,两直线平行).2.如图,已知1=35,B=55,ABAC,则(1)DAB+B=;(2)AD与BC平行吗?AB与CD平行吗?若平行,请说明理由;若不一定,那么再加上什么条件就平行了呢?【答案】(1)180(2)ADBC,理由:同旁内角互补,两条直线平行;AB与CD不一定平行,若要使ABCD,则须满足ACDC,或B+BCD=180.【板书设计】一、提出问题,创设情境二、动手实验,发现新知三、运用新知四、课堂小结五、课后作

15、业5.2.3平行线的性质【教学目标】知识与技能掌握平行线的三个特征,体会平行线特征与平行线识别的区别,能运用平行线的识别与特征解决问题.过程与方法经历观察、操作、推理、交流等活动,进一步发展空间观念,加强推理能力和有条理的表达能力,经历探索平行线的特征的过程,掌握平行线的特征并解决一些问题.情感态度与价值观通过操作、观察、合作、交流,进一步感受学习数学的意义,培养学生主动探索、合作以及解决问题的能力.【教学重难点】重点:平行线的特征.难点:平行线的特征与识别法的综合运用.【教学过程】一、复习回顾设计意图:本节课所学知识与前一节课的内容有着密切的联系,两者既有相同之处又有本质的区别.在课的开始以

16、习题化方式复习已学知识,一方面为本节课的学习奠定好基础,另一方面为“对比发现,加深理解”环节作好铺垫.教师出示问题:如图,直线a、b被直线l所截,在横线上填空:(1)因为1=2(已知),所以ab.(2)因为3=2(已知),所以ab.(3)因为2+4=180(已知),所以ab.学生完成后,组内交流结果.二、情境引入设计意图:通过提出一个极具趣味性的问题,学生可能通过猜测得到答案,但并不理解其中真正的原因所在,从而激发学生强烈的求知欲和好奇心,引入新课的学习.教师出示问题:如图,是举世闻名的三星堆考古中发掘出的一个残缺玉片,工作人员从玉片上已经量得A=115,D=100,已知四边形ABCD的ADB

17、C,请你求出另外两个角的度数.学生经过思考,然后小组进行讨论,在教师的引导下得出结论.三、探究发现设计意图:教师要通过设计问题是,让学生经历观察、操作、推理、想象等探索过程,获得数学活动的经验,要发散学生思维,让学生尽可能用多种方法来说明自己猜测的正确性,培养学生合情说理的能力.问题:已知直线a、b被l所截,ab.让学生自己画出符合要求的图形后,提出问题.(1)合作交流一:请找出图中的同位角,并猜测它们有何关系?你能想办法验证你的猜测吗?(2)合作交流二:请找出图中的内错角,并猜测它们有何关系?你能想办法验证你的猜测吗?(3)合作交流三:图中还有其他位置关系的角吗?它们有何关系呢?说一说你是怎

18、样得到结论的.以上问题在经过学生独立思考后,再进行小组讨论,互相补充,并派代表回答.(4)师生共同总结平行线的特征.四、巩固练习设计意图:通过练习,落实基础,特别是学生刚刚接触到新的知识时,往往应用起来会感到生疏,或者说对它的感觉仍旧停留在“雾里看花”的状态,这就需要一个过程,也就是对新知识从熟悉到熟练的过程.教师出示练习:1.完成下列填空:(1)因为ADBC(已知),所以B=1();(2)因为ABCD(已知),所以D=1();(3)因为ADBC(已知),所以C+D=180().2.如图所示,ABCD,ADBC,分别找出与ADC相等或互补的角.学生完成后集中评议.五、课堂小结设计意图:课堂小结

19、并不只是课堂知识点的回顾,教师要对教学目标的达成情况进行反馈,对相关知识点进行整合,要能够提出明确的具有反思性的问题,让学生有所思,有所得,达到巩固所学知识的目的.1.平行线的三个特征?2.直线平行的特征与直线平行条件的区别.(1)平行线识别与特征的条件与结论有什么关系?(2)使用平行线识别时是已知,说明;使用平行线特征时是已知,说明.师生共同交流总结以上所学的知识.六、课后作业1.如图,若ABCD,则正确的结论是()A.1=2+3B.1=2=3C.1+2+3=180D.1=2+3=180【答案】A2.如图,ABCD,ACBD,试说明1=3.【答案】ABCD(已知),1=2(两直线平等,内错角相等),又ACBD(已知),2=3(两直线平行,同位角相等),1=3(等量代换).【板书设计】一、复习回顾二、情境引入三、探究发现四、巩固练习五、课堂小结六、课后作业

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服