1、2.11有理数的乘方课程标准分析在现实背景中,理解有理数乘方的意义,能熟练地进行有理数的乘方运算.了解乘方的有关概念,培养分析说理能力,通过实例感受当底数大于1时,乘方运算的结果增长得快.通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括能力,注意渗透转化思想.教材分析1.地位与作用:乘方是一种特殊的乘法运算,由于在小学阶段在正方形的面积和正方体的体积计算中涉及a2和a3,所以学生对乘方已有所认识,加之在前面刚学完有理数的乘法,所以说学生对乘方有一定的认知前提.有理数的乘方的学习延续了有理数的乘法的学习,又为后面整式的幂的运算作好铺垫,所以有理数的乘方有一种承前启后的作用,既是有理数运
2、算的一种构成,又为学生的后继学习打好基础.2.重点与难点:重点是乘方的意义及运算;难点是乘方的法则的应用.教法分析对于概念的引入借用学生在小学阶段对a2与a3的认识为基础,引入乘方运算.乘方利用乘法来定义,也就是说,乘方是特殊的乘法,因此,进行乘方运算同样要注意正确运用符号法则,并引导学生理解它与乘法运算的关系.一个数可以看作这个数本身的一次方,指数1通常省略不写,这是一个补充的约定,幂的概念中指数可取任意的正整数,对于有理数乘方的法则,结合例题,可以让学生说一说为什么,加深理解,培养分析说理能力.根据学生情况,也可以让学生讨论一下1的任何次幂,(-1)的奇次幂和(-1)的偶次幂的值.当底数是
3、负数或分数时,必须加上括号,要注意引导学生从运算的意义和运算的结果上去分辨.学法分析学习本节内容时,要联系学过的乘法法则理解有理数乘方的概念,结合在现实情境中理解有理数乘方的意义.在运算时要先确定符号,再计算绝对值.【教学目标】知识与技能理解乘方的意义,能进行有理数的乘方运算.过程与方法经历探索有理数乘方的意义的过程,培养转化的思想方法.情感态度与价值观通过类比、观察、归纳得出正确结论,培养探索、猜想的习惯.【教学重难点】重点:有理数的乘方运算.难点:带各种符号的乘方运算.【教学过程】一、创设情境,导入新课设计意图:教师给学生创设问题情境,鼓励学生积极参与,充分调动了学生的学习积极性,同时,使
4、学生认识到数学的发展是不断进行推广的.师:(多媒体演示细胞分裂过程)某种细胞,每过30分钟便由1个分裂成2个,经过5个小时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1小时后分成22个,1.5个小时后分裂成222个;5个小时后要分裂10次,分裂成=1 024个,为了简便可将记作210;学生思考,根据教师的讲解进入学习情境.师:像上面所表示的210的形式,就是我们今天研究的课题:有理数的乘方(板书).二、探究新知,讲授新课设计意图:通过乘方的概念及意义的探索,使学生理解乘方的意义,并在理解的基础上进行乘方的运算.1.整体感知(1)引导学生观察细胞分裂演示,复习小学已学过的一个数的平
5、方和立方的定义和表示方法.一般地,记作an,例如:222=23,(-2)(-2)(-2)(-2)=(-2)4.(2)教师概括概念:这种求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂,an中,a叫做底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也读作a的n次幂,例如:54中底数是5,指数是4,54读作5的4次方或5的4次幂.2.探究互动互动1试一试:(-2)6读作什么?其中底数是什么?指数是什么?(-2)6是正数还是负数?43=(),(-)3=(),(-1)5=(),(-11)3=().学生通过对有理数乘方意义的理解,互相讨论,两个一组,一个出题,另一个人读出意义,并
6、指明底数是什么,指数是什么,互相交换.(让学生通过出题,互相讨论,既活跃了课堂气氛,又使他们对底数、指数和幂的认识更加清晰)互动2(投影显示例题)学生尝试解,教师巡视,根据学生的情况适时点拨.完成后让学生总结体会.生:根据有理数的乘法法则可以运算,但在乘方运算中幂的符号有什么特点?师:正数的任何次幂都是正数,负数的奇次幂是负数,负数的偶数次幂是正数.(根据有理数乘法法则,积的符号由负因数的个数来确定,负因数的个数是奇数个时,积为负数;负因数个数是偶数个时,积是正数)三、课堂小结设计意图:通过小结,使学生加深对乘方意义的理解与掌握.小结:谈谈你本节课的收获.四、课后作业1.读出下列各数,并指出其
7、中的底数和指数.(1)(-9)7;(2)83;(3)-24;(4)()8.【答案】(1)读作:-9的7次方,底数是-9,指数是7;(2)读作:8的3次方,底数是8,指数是3;(3)读作2的4次方的相反数,底数是2,指数是4;(4)读作的8次方,底数是,指数是8.2.计算:(1)(-1)2n;(2)(-1)2n+1(n为正整数);(3)(-)3;(4)-()3.【答案】(1)1.(2)-1.(3)-.(4)-.3.计算:(1)(-2)3(-3)2;(2)()5()5;(3)0.12519(-8)20.【答案】(1)(-2)3(-3)2=-89=-72;(2)()5()5=()5=1;(3)0.12519(-8)20=0.12519(-8)(-8)19=(-8)0.125(-8)19=(-8)(-1)=8.【板书设计】一、创设情境,导入新课二、探索新知,讲授新课1.整体感知2.探究互动三、课堂小结四、课后作业