资源描述
《三角形内角和》教学设计
一、教材分析:
教材创设了一个有趣的问题情境,以此激发学生的兴趣,引出探索活动。首先,教师应使学生明确“内角”的意义,然后引导学生探索三角形内角和等于多少。大多数学生会想到用测量角的方法,此时就可以安排小组活动。每组同学可以画出大小、形状不同的若干个三角形,分别量出三个内角的度数,并求出它们的和,填写在教材提供的表中。最后发现,大小、形状不同的三角形,每一个三角形内角和都在180°左右。
三角形的内角和是否正好等于180°呢?教材中安排了两个活动:一是把三角形三个内角撕下来,再拼在一起,组成一个平角,因此三角形内角和是180度。二是把三个内角折叠在一起,发现也能组成一个平角。每个活动都要使学生动手试一试,加深对三角形内角和的认识,体验三角形内角和性质的探索过程。
二、学生状况分析:
学生在本课学习前已经认识了三角形的基本特征及分类,并且在四年级(上册)教材里已经知道了两块三角尺上的每一个角的度数,学生课上对数学知识、能力和思考问题的角度有一定的差异,因此比较容易出现解决问题的策略多样化。
三、学习目标:
1.通过测量、撕拼、折叠等方法,探索和发现三角形三个内角的和等于180°。
2.知道三角形两个角的度数,能求出第三个角的度数。
3.发展学生动手操作、观察比较和抽象概括的能力。体验数学活动的探索乐趣,体会研究数学问题的思想方法。
4.能应用三角形内角和的性质解决一些简单的问题。
四、教具、学具准备:
课件、学生准备直角三角形、锐角三角形和钝角三角形各一个,并分别测量出每个内角的角度标在图中、一副三角板。
五、教学过程:
(一)谈话导入 (2分钟)
猜谜语:
形状似座山,稳定性能坚
三竿首尾连,学问不简单 (打一图形)
师:最近我们一直在研究关于三角形的知识,谁能给大家介绍一下?
学生讲学过的三角形知识。
师:就这么简单的一个三角形我们就得出了那么多的知识,你们说数学知识神气不神奇?
今天我们还要继续研究三角形的新知识。
(二)创设情境,引出课题,以疑激思(3分钟)
师:什么是三角形的内角? 三角形有几个内角?
生:就是三角形内的三个角。每个三角形都有三个内角。
师:这个同学说得很好,三条线段在围成三角形后,在三角形内形成了三个角(课件闪烁三个角的弧线),我们把三角形内的这三个角,分别叫做三角形的内角。
师:有两个三角形为了一件事正在争论,我们来帮帮他们。
师:同学们,请你们给评评理:是这样吗?
生1:我认为是这样的,因为大三角形大,它的三个内角的和就大。
生2:我不同意,我认为两个三角形的三个内角和的度数都是一样的。
生3:当然是大三角形的内角和大了。
生4:我同意第二个同学的意见,两个三角形的内角和一样大。
师:现在出现了两种不同的意见,有的同学认为大三角形的内角和大,还有部分同学认为两个三角形的内角和的度数都是一样的。那么到底谁说得对呢?这节课我们就一起来研究这个问题。(板书课题:三角形的内角和)
(三)动手操作,探究问题,以动启思(20分钟)
1、师拿出两个三角板,问:它们是什么三角形?
生:直角三角形。
师:请大家拿出自己的两个三角尺,在小组内说说每一个三角尺上三个角的度数,并求出这两个直角三角形的内角和。
学生们能够很快求出每块三角尺的3个角的和都是180°
师:其他三角形的内角和也是180°吗?
生A:其他三角形的内角和也是180°
生B:其他三角形的内角和不是180°
生C:不一定
2、师:同学们能通过动手操作,想办法来验证自己的猜想吗?请同学们先独立思考想一想,再在小组内把你的想法与同伴进行交流,然后选用一种方法进行验证。看谁最先发现其中的“奥秘”;看谁能争取到向大家作“实验成功的报告”。
(1)小组合作,讨论验证方法
(2)汇报验证方法、结果
谁愿意给大家介绍你们小组是用什么方法来验证的?结果怎样?
生A:我们小组是用剪拼的方法,将三角形的三个角剪下来,拼成一个平角,得到三角形的内角和是180度。
师:上来展示给大家瞧一瞧。你们看这位同学多细心呀,为了方便、不混淆,在剪之前,他先给3个角标上了符号。
师:现在请同学们看屏幕,我们在电脑里把刚才剪拼的过程重播一遍。你们看成功了,3个角拼成了一个平角,刚才剪拼的是一个锐角三角形,那还有直角三角形、钝角三角形呢?请同学们进行剪拼,看是否能拼成一个平角。
生:不管什么三角形三个角都能拼成一个平角。
师:刚才这种剪拼的方法可以不用再一个角一个角来量,就能证明三角形的内角和是180°,你们觉得这种方法好不好?那我们把掌声送给刚才这个小组。
生B:我们小组是用撕的方法。我们是用手把3个角撕下来,然后再拼,结果也能拼成一个平角。(真会动脑筋,不用工具也行)
生C:我们小组是用折的方法,同样得到三角形的内角和是180度。
师:请这位同学折来给大家看看。
生:3个角折成了一个平角。
师:真是个手巧的孩子。他刚才折的是一个锐角三角形,你们小组还有折其他三角形的吗?(汇报其它三角形折的情况)
锐角三角形、钝角三角形都折了几次?(3次)现在请同学们看屏幕,让我们来看看直角三角形折了几次?(展示:直角三角形折的过程)
师:折了几次?想想为什么直角三角形可以只折两次就能证明。
生;因为它是一个直角三角形,已经有了一个直角,另外2个锐角只要能拼成直角,三个角的和就是180°了。
师:说得真清楚。
3、师:老师让每个同学都准备了直角三角形、锐角三角形和钝角三角形三种不同的三角形,并量出了每个内角的度数,下面就请同学们在小组内每种各选一个求出它们的内角和,把结果填在表中:
汇报
问:你们发现了什么?
小结:通过测量我们发现每个三角形的三个内角和都在180度左右。
师:三角形的内角和就是180度,只是因为我们在测量时会出现一些误差,所以测量出的结果不是很准确。
4、师小结:刚才同学们用量、剪、拼、折等方法证明了无论是什么样的三角形内角和都是1800,(板书:是180°)现在让我们用自豪的、肯定的语气读出我们的发现:“三角形的内角和是1800”。
5、师:(出示一个大三角形)它的内角和是多少度?
生:180 。
师:(出示一个很小的三角形 )它的内角和是多少度?
生:180 。
师:一块三角尺的内角和180°,两块同样的三角尺拼成的一个大三角形的内角和又是多少呢?
师:把大三角形平均分成两份。它的(指均分后的一个小三角形)内角和是多少度?(生有的答90 °,有的180 °。)
师:哪个对?为什么?
生:180°,因为它还是一个三角形。
师:每个小三角形的度数是180°,那么这样的两个小三角形拼成一个大三角形,内角和是多少度?
这时学生的答案又出现了180°和360°两种。
师:究竟谁对呢?
学生个个脸上露出疑问,大家可以在小组内拼一拼,进行讨论
经过一翻激烈的讨论探究后,学生开始举手回答。
生1:180°,因为两个三角形拼在一起,就变成了一个三角形了,每个三角形的内角和总是180°。
生2:我发现两个小三角形拼成一个大三角形,拼接在一起的两条边上的两个角没有了,就比原来两个三角形少180 °,所以大三角形的内角和还是180°,不是360°。
师:表扬:你真聪明。演示:
师:三角形不论位置、大小、形状如何,它的内角和总是180°
(四)巩固练习:(15分钟)
学会了知识,我们就要懂得去运用。下面,我们就根据三角形内角和的知识来解决一些相关的数学问题。
1、求三角形中一个未知角的度数。
(1)在三角形中,已知∠1=70°,∠2=50°,求∠3。
(2)在三角形中,已知∠1=78°,∠2=44°,求∠3。
(3)选算式:(1)∠A=180°-55°(2)∠A=180°-90°-55°(3)∠A=90°-55°
2、判断
(1) 一个三角形的三个内角度数是:80° 、75° 、 24°( )
(2)三角形越大,它的内角和就越大。 ( )
(3)一个三角形至少有两个角是锐角。 ( )
(4)钝角三角形的两个锐角和大于90°。
3、解决生活实际问题。
(1)爸爸给小红买了一个等腰三角形的风筝,它的一个底角是70°,它的顶角是多少度?
(2)交通警示牌“让”为等边三角形,求其中一个角的度数。
(五)课堂小结
六、设计评价
1、通过独立探索,独立动手使学生的创造性思维得以发展:通过小组合作交流互评使学生体会到合作的快乐,并在不断的交流互评的过程中达成对目标的共识。
2.、通过多边形内角和的猜想及验证,发展了学生的学习的空间想象力,使课堂的知识得以延伸。
展开阅读全文