资源描述
1.某市将大、中、小学生的视力进行抽样分析,其中大、中、小学生的人数比为2∶3∶5,若已知中学生被抽到的人数为150人,则应抽取的样本容量n等于( )
A.1500 B.1000
C.500 D.150
解析:选C.设抽到的大、中、小学生人数为2x、3x、5x,由3x=150,∴x=50,∴n=500.
2.利用简单随机抽样,从n个个体中抽取一个容量为10的样本.若第二次抽取时,余下的每个个体被抽到的概率为,则在整个抽样过程中,每个个体被抽到的概率为( )
A. B.
C. D.
解析:选B.由题意知=,∴n=28.
∴P==.
3.为了调查某产品的销售情况,销售部门从下属的92家销售连锁店中抽取30家了解情况.若用系统抽样法,则抽样间隔和随机剔除的个体数分别为( )
A.3,2 B.2,3
C.2,30 D.30,2
解析:选A.因为92÷30不是整数,因此必须先剔除部分个体数,因为92÷30=3……2,故剔除2个即可,而间隔为3.
4.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8号,9~16号,…,153~160号),若第16组抽出的号码为126,则第1组中用抽签的方法确定的号码是________.
解析:设第1组抽出的号码为x,则第16组应抽出的号码是8×15+x=126,∴x=6.
答案:6
5.(2009年高考广东卷)某单位200名职工的年龄分布情况如图,现要从中抽取40名职工作样本、用系统抽样法,将全体职工随机按1~200编号,并按编号顺序平均分为40组(1~5号,6~10号,…,196~200号).若第5组抽出的号码为22,则第8组抽出的号码应是________.若用分层抽样方法,则40岁以下年龄段应抽取________人.
解析:由分组可知,抽号的间隔为5,又因为第5组抽出的号码为22,所以第6组抽出的号码为27,第7组抽出的号码为32,第8组抽出的号码为37.
40岁以下的年龄段的职工数为200×0.5=100,则应抽取的人数为×100=20(人).
答案:37 20
6.某校500名学生中,O型血有200人,A型血有125人,B型血有125人,AB型血有50人,为了研究血型与色弱的关系,需从中抽取一个容量为20的样本.按照分层抽样方法抽取样本,各种血型的人分别抽多少?写出抽样过程.
解:用分层抽样方法抽样.
∵=,∴200×=8,125×=5,50×=2.
故O型血抽8人,A型血抽5人,B型血抽5人,AB型血抽2人.抽样过程略.各种血型的抽取可用简单随机抽样(如AB型)或系统抽样(如A型)法抽取,直至取出容量为20的样本.
展开阅读全文