收藏 分销(赏)

【创新设计】(浙江专用)2014届高考数学总复习-第12篇-第1讲-离散型随机变量及其分布列限时训练-理.doc

上传人:仙人****88 文档编号:7374856 上传时间:2025-01-01 格式:DOC 页数:6 大小:121KB
下载 相关 举报
【创新设计】(浙江专用)2014届高考数学总复习-第12篇-第1讲-离散型随机变量及其分布列限时训练-理.doc_第1页
第1页 / 共6页
【创新设计】(浙江专用)2014届高考数学总复习-第12篇-第1讲-离散型随机变量及其分布列限时训练-理.doc_第2页
第2页 / 共6页
点击查看更多>>
资源描述
随机变量及其分布列 第1讲 离散型随机变量及其分布列 分层A级 基础达标演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.如果X是一个离散型随机变量,那么下列命题中假命题是 (  ). A.X取每个可能值的概率是非负实数 B.X取所有可能值的概率之和为1 C.X取某2个可能值的概率等于分别取其中每个值的概率之和 D.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和 解析 由离散型随机变量的性质,得pi≥0,i=1,2,…n,且i=1. 答案 D 2.已知随机变量X的分布列为P(X=i)=(i=1,2,3),则P(X=2)等于(  ). A. B. C. D. 解析 ∵++=1,∴a=3,P(X=2)==. 答案 C 3.若随机变量X的概率分布列为 X x1 x2 P p1 p2 且p1=p2,则p1等于(  ). A. B. C. D. 解析 由p1+p2=1且p2=2p1可解得p1=. 答案 B 4.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2<X≤4)等于 (  ). A. B. C. D. 解析 P(2<X≤4)=P(X=3)+P(X=4)=+=. 答案 A 二、填空题(每小题5分,共10分) 5.(2012·上海虹口3月模拟)已知某一随机变量ξ的概率分布列如下,且E(ξ)=6.3,则a=________. ξ 4 a 9 P 0.5 0.1 b 解析 由分布列性质知:0.5+0.1+b=1,∴b=0.4.∴E(ξ)=4×0.5+a×0.1+9×0.4=6.3.∴a=7. 答案 7 6.(2013·泉州模拟)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________. 解析 η的所有可能值为0,1,2.P(η=0)==,P(η=1)==,P(η=2)==. η 0 1 2 P 答案  η 0 1 2 P 三、解答题(共25分) 7.(12分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率 P===. (2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且 P(X=0)==,P(X=10)==, P(X=20)==,P(X=50)==, P(X=60)==. 所以X的分布列为: X 0 10 20 50 60 P 8.(13分)(2012·江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0 ;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0); (2)求ξ的分布列,并求其数学期望E(ξ). 解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C对相交棱,因此P(ξ=0)===. (2)若两条棱平行,则它们的距离为1或,其中距离为的共有6对,故P(ξ=)==, 于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=, 所以随机变量ξ的分布列是 ξ 0 1 P 因此E(ξ)=1×+×=. 分层B级 创新能力提升 1.(2013·长沙二模)若离散型随机变量X的分布列为: X 0 1 P 9c2-c 3-8c 则常数c的值为 (  ). A.或 B. C. D.1 解析 ∴c=. 答案 C 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于 (  ). A.C102 B.C92 C.C92 D.C102 解析 “X=12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P(X=12)=C92= C102. 答案 D 3.(2013·郑州调研)设随机变量X的概率分布列为 X 1 2 3 4 P m 则P(|X-3|=1)=________. 解析 由+m++=1,解得m=,P(|X-3|=1)=P(X=2)+P(X=4)=+=. 答案  4.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________. 解析 X=-1,甲抢到一题但答错了,或抢到三题只答对一题;X=0,甲没抢到题,或甲抢到2题,但答时一对一错;X=1时,甲抢到1题且答对或甲抢到3题,且一错两对;X=2时,甲抢到2题均答对;X=3时,甲抢到3题均答对. 答案 -1,0,1,2,3 5.某高中共派出足球、排球、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为,,. (1)求该高中获得冠军个数X的分布列; (2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列. 解 (1)∵X的可能取值为0,1,2,3,取相应值的概率分别为 P(X=0)=××=, P(X=1)=××+××+××=, P(X=2)=××+××+××=, P(X=3)=××=. ∴X的分布列为 X 0 1 2 3 P (2)∵得分η=5X+2(3-X)=6+3X, ∵X的可能取值为0,1,2,3. ∴η的可能取值为6,9,12,15,取相应值的概率分别为 P(η=6)=P(X=0)=,P(η=9)=P(X=1)=, P(η=12)=P(X=2)=,P(η=15)=P(X=3)=. ∴得分η的分布列为 η 6 9 12 15 P 6.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的分布列,并求李明在一年内领到驾照的概率. 解 X的取值分别为1,2,3,4. X=1,表明李明第一次参加驾照考试就通过了, 故P(X=1)=0.6. X=2,表明李明在第一次考试未通过,第二次通过了, 故P(X=2)=(1-0.6)×0.7=0.28. X=3,表明李明在第一、二次考试未通过,第三次通过了, 故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096. X=4,表明李明第一、二、三次考试都未通过, 故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024. ∴李明实际参加考试次数X的分布列为 X 1 2 3 4 P 0.6 0.28 0.096 0.024 李明在一年内领到驾照的概率为 1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6. 6
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服