ImageVerifierCode 换一换
格式:DOC , 页数:6 ,大小:121KB ,
资源ID:7374856      下载积分:10 金币
快捷注册下载
登录下载
邮箱/手机:
温馨提示:
快捷下载时,用户名和密码都是您填写的邮箱或者手机号,方便查询和重复下载(系统自动生成)。 如填写123,账号就是123,密码也是123。
特别说明:
请自助下载,系统不会自动发送文件的哦; 如果您已付费,想二次下载,请登录后访问:我的下载记录
支付方式: 支付宝    微信支付   
验证码:   换一换

开通VIP
 

温馨提示:由于个人手机设置不同,如果发现不能下载,请复制以下地址【https://www.zixin.com.cn/docdown/7374856.html】到电脑端继续下载(重复下载【60天内】不扣币)。

已注册用户请登录:
账号:
密码:
验证码:   换一换
  忘记密码?
三方登录: 微信登录   QQ登录  

开通VIP折扣优惠下载文档

            查看会员权益                  [ 下载后找不到文档?]

填表反馈(24小时):  下载求助     关注领币    退款申请

开具发票请登录PC端进行申请

   平台协调中心        【在线客服】        免费申请共赢上传

权利声明

1、咨信平台为文档C2C交易模式,即用户上传的文档直接被用户下载,收益归上传人(含作者)所有;本站仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。所展示的作品文档包括内容和图片全部来源于网络用户和作者上传投稿,我们不确定上传用户享有完全著作权,根据《信息网络传播权保护条例》,如果侵犯了您的版权、权益或隐私,请联系我们,核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
2、文档的总页数、文档格式和文档大小以系统显示为准(内容中显示的页数不一定正确),网站客服只以系统显示的页数、文件格式、文档大小作为仲裁依据,个别因单元格分列造成显示页码不一将协商解决,平台无法对文档的真实性、完整性、权威性、准确性、专业性及其观点立场做任何保证或承诺,下载前须认真查看,确认无误后再购买,务必慎重购买;若有违法违纪将进行移交司法处理,若涉侵权平台将进行基本处罚并下架。
3、本站所有内容均由用户上传,付费前请自行鉴别,如您付费,意味着您已接受本站规则且自行承担风险,本站不进行额外附加服务,虚拟产品一经售出概不退款(未进行购买下载可退充值款),文档一经付费(服务费)、不意味着购买了该文档的版权,仅供个人/单位学习、研究之用,不得用于商业用途,未经授权,严禁复制、发行、汇编、翻译或者网络传播等,侵权必究。
4、如你看到网页展示的文档有www.zixin.com.cn水印,是因预览和防盗链等技术需要对页面进行转换压缩成图而已,我们并不对上传的文档进行任何编辑或修改,文档下载后都不会有水印标识(原文档上传前个别存留的除外),下载后原文更清晰;试题试卷类文档,如果标题没有明确说明有答案则都视为没有答案,请知晓;PPT和DOC文档可被视为“模板”,允许上传人保留章节、目录结构的情况下删减部份的内容;PDF文档不管是原文档转换或图片扫描而得,本站不作要求视为允许,下载前可先查看【教您几个在下载文档中可以更好的避免被坑】。
5、本文档所展示的图片、画像、字体、音乐的版权可能需版权方额外授权,请谨慎使用;网站提供的党政主题相关内容(国旗、国徽、党徽--等)目的在于配合国家政策宣传,仅限个人学习分享使用,禁止用于任何广告和商用目的。
6、文档遇到问题,请及时联系平台进行协调解决,联系【微信客服】、【QQ客服】,若有其他问题请点击或扫码反馈【服务填表】;文档侵犯商业秘密、侵犯著作权、侵犯人身权等,请点击“【版权申诉】”,意见反馈和侵权处理邮箱:1219186828@qq.com;也可以拔打客服电话:0574-28810668;投诉电话:18658249818。

注意事项

本文(【创新设计】(浙江专用)2014届高考数学总复习-第12篇-第1讲-离散型随机变量及其分布列限时训练-理.doc)为本站上传会员【仙人****88】主动上传,咨信网仅是提供信息存储空间和展示预览,仅对用户上传内容的表现方式做保护处理,对上载内容不做任何修改或编辑。 若此文所含内容侵犯了您的版权或隐私,请立即通知咨信网(发送邮件至1219186828@qq.com、拔打电话4009-655-100或【 微信客服】、【 QQ客服】),核实后会尽快下架及时删除,并可随时和客服了解处理情况,尊重保护知识产权我们共同努力。
温馨提示:如果因为网速或其他原因下载失败请重新下载,重复下载【60天内】不扣币。 服务填表

【创新设计】(浙江专用)2014届高考数学总复习-第12篇-第1讲-离散型随机变量及其分布列限时训练-理.doc

1、 随机变量及其分布列 第1讲 离散型随机变量及其分布列 分层A级 基础达标演练 (时间:30分钟 满分:55分) 一、选择题(每小题5分,共20分) 1.如果X是一个离散型随机变量,那么下列命题中假命题是 (  ). A.X取每个可能值的概率是非负实数 B.X取所有可能值的概率之和为1 C.X取某2个可能值的概率等于分别取其中每个值的概率之和 D.X在某一范围内取值的概率大于它取这个范围内各个值的概率之和 解析 由离散型随机变量的性质,得pi≥0,i=1,2,…n,且i=1. 答案 D 2.已知随机变量X的分布列为P(X=i)=(i=1,2,3),

2、则P(X=2)等于(  ). A. B. C. D. 解析 ∵++=1,∴a=3,P(X=2)==. 答案 C 3.若随机变量X的概率分布列为 X x1 x2 P p1 p2 且p1=p2,则p1等于(  ). A. B. C. D. 解析 由p1+p2=1且p2=2p1可解得p1=. 答案 B 4.已知随机变量X的分布列为:P(X=k)=,k=1,2,…,则P(2

3、0分) 5.(2012·上海虹口3月模拟)已知某一随机变量ξ的概率分布列如下,且E(ξ)=6.3,则a=________. ξ 4 a 9 P 0.5 0.1 b 解析 由分布列性质知:0.5+0.1+b=1,∴b=0.4.∴E(ξ)=4×0.5+a×0.1+9×0.4=6.3.∴a=7. 答案 7 6.(2013·泉州模拟)在一个口袋中装有黑、白两个球,从中随机取一球,记下它的颜色,然后放回,再取一球,又记下它的颜色,写出这两次取出白球数η的分布列为________. 解析 η的所有可能值为0,1,2.P(η=0)==,P(η=1)==,P(η=2)==. η

4、 0 1 2 P 答案  η 0 1 2 P 三、解答题(共25分) 7.(12分)在一次购物抽奖活动中,假设某10张券中有一等奖券1张,可获价值50元的奖品;有二等奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率; (2)该顾客获得的奖品总价值X元的概率分布列. 解 (1)该顾客中奖,说明是从有奖的4张奖券中抽到了1张或2张,由于是等可能地抽取,所以该顾客中奖的概率 P===. (2)依题意可知,X的所有可能取值为0,10,20,50,60(元),且 P(X=0

5、)==,P(X=10)==, P(X=20)==,P(X=50)==, P(X=60)==. 所以X的分布列为: X 0 10 20 50 60 P 8.(13分)(2012·江苏)设ξ为随机变量,从棱长为1的正方体的12条棱中任取两条,当两条棱相交时,ξ=0 ;当两条棱平行时,ξ的值为两条棱之间的距离;当两条棱异面时,ξ=1. (1)求概率P(ξ=0); (2)求ξ的分布列,并求其数学期望E(ξ). 解 (1)若两条棱相交,则交点必为正方体8个顶点中的1个,过任意1个顶点恰有3条棱,所以共有8C对相交棱,因此P(ξ=0)===. (2)若两条

6、棱平行,则它们的距离为1或,其中距离为的共有6对,故P(ξ=)==, 于是P(ξ=1)=1-P(ξ=0)-P(ξ=)=1--=, 所以随机变量ξ的分布列是 ξ 0 1 P 因此E(ξ)=1×+×=. 分层B级 创新能力提升 1.(2013·长沙二模)若离散型随机变量X的分布列为: X 0 1 P 9c2-c 3-8c 则常数c的值为 (  ). A.或 B. C. D.1 解析 ∴c=. 答案 C 2.一袋中有5个白球,3个红球,现从袋中往外取球,每次

7、任取一个记下颜色后放回,直到红球出现10次时停止,设停止时共取了X次球,则P(X=12)等于 (  ). A.C102 B.C92 C.C92 D.C102 解析 “X=12”表示第12次取到红球,前11次有9次取到红球,2次取到白球,因此P(X=12)=C92= C102. 答案 D 3.(2013·郑州调研)设随机变量X的概率分布列为 X 1 2 3 4 P m 则P(|X-3|=1)=________. 解析 由+m++=1,解得m=,

8、P(|X-3|=1)=P(X=2)+P(X=4)=+=. 答案  4.甲、乙两队在一次对抗赛的某一轮中有3个抢答题,比赛规定:对于每一个题,没有抢到题的队伍得0分,抢到题并回答正确的得1分,抢到题但回答错误的扣1分(即得-1分).若X是甲队在该轮比赛获胜时的得分(分数高者胜),则X的所有可能取值是________. 解析 X=-1,甲抢到一题但答错了,或抢到三题只答对一题;X=0,甲没抢到题,或甲抢到2题,但答时一对一错;X=1时,甲抢到1题且答对或甲抢到3题,且一错两对;X=2时,甲抢到2题均答对;X=3时,甲抢到3题均答对. 答案 -1,0,1,2,3 5.某高中共派出足球、排球

9、篮球三个球队参加市学校运动会,它们获得冠军的概率分别为,,. (1)求该高中获得冠军个数X的分布列; (2)若球队获得冠军,则给其所在学校加5分,否则加2分,求该高中得分η的分布列. 解 (1)∵X的可能取值为0,1,2,3,取相应值的概率分别为 P(X=0)=××=, P(X=1)=××+××+××=, P(X=2)=××+××+××=, P(X=3)=××=. ∴X的分布列为 X 0 1 2 3 P (2)∵得分η=5X+2(3-X)=6+3X, ∵X的可能取值为0,1,2,3. ∴η的可能取值为6,9,12,15,取相应值的概率分别为

10、 P(η=6)=P(X=0)=,P(η=9)=P(X=1)=, P(η=12)=P(X=2)=,P(η=15)=P(X=3)=. ∴得分η的分布列为 η 6 9 12 15 P 6.某地最近出台一项机动车驾照考试规定:每位考试者一年之内最多有4次参加考试的机会,一旦某次考试通过,便可领取驾照,不再参加以后的考试,否则就一直考到第4次为止.如果李明决定参加驾照考试,设他每次参加考试通过的概率依次为0.6,0.7,0.8,0.9.求在一年内李明参加驾照考试次数X的分布列,并求李明在一年内领到驾照的概率. 解 X的取值分别为1,2,3,4. X=1,表明李明第一

11、次参加驾照考试就通过了, 故P(X=1)=0.6. X=2,表明李明在第一次考试未通过,第二次通过了, 故P(X=2)=(1-0.6)×0.7=0.28. X=3,表明李明在第一、二次考试未通过,第三次通过了, 故P(X=3)=(1-0.6)×(1-0.7)×0.8=0.096. X=4,表明李明第一、二、三次考试都未通过, 故P(X=4)=(1-0.6)×(1-0.7)×(1-0.8)=0.024. ∴李明实际参加考试次数X的分布列为 X 1 2 3 4 P 0.6 0.28 0.096 0.024 李明在一年内领到驾照的概率为 1-(1-0.6)(1-0.7)(1-0.8)(1-0.9)=0.997 6. 6

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服