1、直接开平方解一元二次方程教学目标:1、会用直接开平方法解形如(a0,ab0)的方程2、灵活应用因式分解法解一元二次方程3、使学生了解转化的思想在解方程中的应用,渗透换远方法。重点难点:合理选择直接开平方法和因式分解法较熟练地解一元二次方程,理解一元二次方程无实根的解题过程。教学过程:问:怎样解方程的?让学生说出作业中的解法,教师板书。解:1、直接开平方,得x+1=16所以原方程的解是x115,x2172、原方程可变形为方程左边分解因式,得(x+1+16)(x+116)=0即可(x+17)(x15)=0所以x17=0,x15=0原方程的蟹 x115,x217二、例题讲解与练习巩固1、例1 解下列
2、方程(1)(x1)240; (2)12(2x)290分析两个方程都可以转化为(a0,ab0)的形式,从而用直接开平方法求解.解(1)原方程可以变形为(x1)24,直接开平方,得x12.所以原方程的解是x11,x23.原方程可以变形为_,有_.所以原方程的解是x1_,x2_.2、说明:(1)这时,只要把看作一个整体,就可以转化为(0)型的方法去解决,这里体现了整体思想。3、练习一 解下列方程:(1)(x2)2160; (2)(x1)2180;(3)(13x)21; (4)(2x3)2250.三、读一读四、讨论、探索:解下列方程 (1)(x+2)2=3(x+2) (2)2y(y-3)=9-3y (3)( x-2)2 x+2 =0 (4)(2x+1)2=(x-1)2 (5)。本课小结:1、对于形如(a0,a0)的方程,只要把看作一个整体,就可转化为(n0)的形式用直接开平方法解。 2、当方程出现相同因式(单项式或多项式)时,切不可约去相同因式,而应用因式分解法解。布置作业: