1、第二单元 圆柱与圆锥第一课时 圆柱的认识(一)教学要求:1、使学生认识圆柱,掌握圆柱各部分的名称。2、通过观察、动手操作,发现和总结出圆柱的特征,能看懂圆柱的平面图,认识圆柱侧面的展开图。 3、从实物中抽象出圆柱的立体图形,给出图形名称,让学生经历由形象表象抽象的过程,培养学生观察、分析、抽象、概括等思维能力。 教学重点:教学难点:教学准备:长方体、正方体、圆柱形的物体、小黑板等。教学过程:一、回顾旧知,复习铺垫。1、已知圆的半径或直径,怎样计算圆的周长?(1)圆的周长公式:C2r或Cd。(2)已知r=3cm,求C =? d=2.5dm,求C =? 2、求下面各圆的周长。 教师依次出示题目,然
2、后指名学生回答,其他学生评判答案是否正确。二、揭示目标。1、教师手中先后拿一个长方体形的物体和正方体形的物体,提问:我手里拿的物体是什么形状的?他们有什么特征?(由此引导学生复习长方体和正方体的一些特征。)2、教师出示几个圆柱形的物体,“大家注意了,你们看看这些物体跟长方体、正方体的形状一样吗?” (学生:不一样)3、其实,就是圆柱。你想对它们有更多的了解吗?(板书课题:圆柱的认识) 三、引导探索,学习新知。1、圆柱的概念。(1)拿出自己准备好的物体,看一看,摸一摸,你们感觉它们与长方体有什么不一样? (2)让学生拿着圆柱形的物体观察和摆弄后,指定几名学生说出自己观察的结果。(3)根据学生回答
3、,教师板书。长方体、正方体都是由平面围成的立体图形;圆柱则有一个曲面, 有两个面是圆,从上到下一样粗细,等等。(4)教师指出:像这样的物体就叫做圆柱体,简称圆柱。2、圆柱的各部分名称。(1)底面。师:请大家再观察一下,这些圆柱的上、下两个面有什么特点?( 圆柱上两个面圆圆的面)引导学生发现:圆柱的上、下两个面都是平面,并且它们是完全相同的两个圆。教师指出:圆柱的上、下两个面叫做底面。教师示范在图上标出底面以及两个圆的圆心O;然后学生在图上标出底面以及两个圆的圆心O。强调:我们所学的圆柱是直圆柱的简称,即两个底面之间从上到下一样粗细,高垂直于底面。(2)侧面。接着让学生用手摸一摸圆柱周围的面,并
4、在同桌间相互交流?引导学生发现:圆柱有一个曲面。教师指出:圆柱的这个曲面叫做侧面。教师示范在图上标出侧面;然后学生在图上也标出侧面。(3)高。教师出示:高、矮不同的两个圆柱。问:哪个圆柱高,哪个矮?(学生容易回答)想一想,圆柱的高矮与圆柱的两个底面之间有什么关系?引导学生发现:圆柱的高矮与圆柱的两个底面之间的距离有关。教师指出:圆柱的两个底面之间的距离叫做高。教师示范在图上标出高;然后学生在图上也标出高。(告知学生:圆柱的高既可以在其内部表示出来,也可以在圆柱的侧面表示出来。)提问:圆柱的高有多少条?他们之间有什么关系?(圆柱的高有无数条,他们都相等。)3、圆柱的各部分特征。(1)出示圆柱形实
5、物及圆柱图形的底面、侧面和高。学生指出;学生画出。(2)讨论:圆柱的底面、侧面和高各有什么特征?板书课题:圆柱教师:大家刚才认识了圆柱形的物体,我们把这些物体画在投影片上。出示有圆柱形物体的投影片。教师:现在我们沿着这些圆柱形物体的轮廓画线,于是就可以得到这样的图形。随后教师抽拉投影片,演示得到圆柱形物体的轮廓线。然后指出:这样得到的图形就是圆柱体的几何图形。 小结:圆柱的特征(可以启发学生总结),强调底面和高的特点。 上、下两个面都是面积相等的圆 圆柱 从上到下粗细相同 2、巩固练习 (1)做“做一做”的第2、3题。 要求学生说出日常生活中哪些物体是圆柱形的,如钢管、汽油桶、炉子姻简、截面是
6、圆形的铅笔等。 (2)出示一组立体图形,辨析哪些是圆柱,哪些不是圆柱?为什么?四、巩固深化,理解运用。五、课堂小结,提高认识。这节课我们学习了圆的哪些知识?要注意什么?六、课堂作业。七、板书设计: 圆柱的认识(一)2、圆柱的表面积 教学内容:教科书第3334页的例l一例3,完成“做一做”和练习七的第25题。教学目的:使学生理解圆柱侧面积和圆柱表面积的含义,掌握圆柱侧面积和表面积的计算方法。并根据圆柱的表面积与侧面积的关系使学生学会运用所学的知识解决简单的实际问题。教具准备:圆柱形的物体,圆柱侧面的展开图教学过程; 一、复习 1、指名学生说出圆柱的特征。 学生回答后板书:长方形的面积长宽二、导入
7、新课 教师:上节课我们认识了圆柱和圆柱的侧面展开图。请大家想一想,圆柱侧面的展开图是什么图形? 教师出示上节课实验用的罐头盒,引导学生回忆实验过程:沿着罐头盒的一条高剪开商标纸,再打开,展开在黑板上,得到的是一个长方形。 教师:这个展开后的长方形与圆柱有什么关系? 学生:这个长方形的长等于圆柱的周长,长方形的宽等于圆往的高。 教师:那么,圆柱侧面积应该怎样计算呢?今天我们就来学习有关圆柱的侧面积和表面积的计算。 三、新课 1,圆柱的侧面积。 板书课题:圆柱的侧面积。 教师:圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 教师边叙述边摸着圆柱的侧面演示给学生看,指出侧面的大小就是圆柱的侧面积。
8、教师:从上面的实验我们可以看出,这个展开后的长方形的面积和因拄的侧面积有什么关系呢? 教师出示圆柱的侧面展开图,让学生观察很容易看到这个长方形的面积等于圆柱的例面积。 教师:那么,圆柱的侧面积应该怎样计算呢? 引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道: 圆柱的侧面积底面周长高(板书上面等式:) 2、教学例1: 让学生回答下面的问题: (1)这道题已知什么,求什么? (2)计算结果要注意什么? 指定一名学生板演,其他学生在练习本上做。教师行间巡视,注意发现学生计算中的错误,并及时纠正。 做完后,集体订正。 3、小结。 要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个
9、条件,有时题里只给出直径或半径底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式: 4、理解圆柱表面积的含义。 教师:请大家把上节课自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成? 通过操作,使学生认识到:圆柱的表面由上、下两个底面和侧面组成。 教师指着圆柱的展开图,“那么,圆柱的表面积是什么?” 指名学生回答,使大家明确:圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。板书:圆柱的表面积圆柱侧面积十两个底面的面积教学例2。教师:这道题已知什么?求什么?学生:已知圆柱的高和底面半径,求表面积。教师:要求圆柱的表面积,应该先求什么?后求什么?使学生
10、明白:要先求圆柱侧面积和底面积,后求表面积。教师:我们可以根据已知条件画出这个圆柱。随后教师出示圆柱模型,将数据标在图上。教师:现在我们把这个圆柱展开。出示展开图。 让学生观察展开图,“在这个图中,长方形的长等于多少?宽等于多少:圆柱的侧面积怎样计算?圆柱的底面积应该怎样求?” 指名学生回答,注意要使学生弄清每一步计算运用什么公式(如圆的周长公式和面积公式,长方形的面积公式,等等)。 然后指定一名学生在黑板上板演,其他学生在练习本上做。教师行间巡视,注意察看学生计算结果的计量单位是否正确。做完后,集体订正。6、教学例3。教师:这道题已知什么?求什么?学生:己知圆柱形水桶的高是24厘米,底面直径
11、是20厘米。求做这个水桶要用多少铁皮。 教师:这个水桶是没有盖的,说明了什么?如果把做这个水桶的铁皮展开,会有哪几部分? 使学生明白:水桶没有盖,说明它只有一个底面。 教师:要计算做这个水桶需要多少铁皮,应该分哪几步? 指名学生回答后,指定两名学生板演,其他学生独立进行计算。教师行间巡视,注意察看最后的得数是否计算正确。 做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取舍的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五人法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近似值的方法叫做进一法。 7、小结。 在
12、实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积。如计算烟筒用铁皮只求一个侧面积,水桶用铁皮是侧面积加上一个底面积,油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用。四、巩固练习1、做“做一做”的第1题。 教师:这道题已知什么?应该怎样求侧面积? 使学生明白可以直接用底面周长乘以高就可以得到侧面积。 让学生做在练习本上,做完后集体订正。 2、做一做的第2题。 让学生独立做在练习本上,教师行间巡视,做完后集体订正。 五、作业 1、完成第练习七的第25题。 (1)第2、3题,是分别求圆柱的例面积和表面积,要求学生正确选用公式,认真仔细地计算。 (2
13、)第4题,圆柱形沼气池的形状和特点要向学生说明(特别是城市里的小学生),把它转化为数学问题,要弄清求的是圆柱哪些部分的面积。 (3)第5题,是先实际测量,再计算的题目,可以分组进行测量和计算,每组要量的茶叶筒的大小可以是不一样的。 2、让学有余力的学生做练习十的第6、7题。 第6题是已知圆柱的侧面积和底面半径,求圆柱的高。这样就要把求圆柱的 侧面积的运算顺序颠倒过来。教师可以提示学生列方程解答。第7题,是求一个没有盖的圆柱形铁皮水桶的用料:SR十2H6359 十 33912402.71410(平方分米)3、圆柱的体积教学内容:教科书第36页的圆柱体积公式的推导和例4,完成“做一做”的第1题和练
14、习八的第12题。教学目的:通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,使学生理解圆柱的体积公式的推导过程,能够运用公式正确地计算圆柱的体积。教具准备:圆柱的体积公式演示教具(把圆柱底面平均分成16个扇形,然后把它分成两部分,两部分分别用不同颜色区别开)。教学过程: 一、复习 1、圆柱的侧面积怎么求? (圆柱的侧面积底面周长高。) 2、长方体的体积怎样计算? 学生可能会答出“长方体的体积长宽高”,教师继续引导学生想到长方体和正方体体积的统一公式“底面积高”。 板书:长方体的体积底面积高 3、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么?圆柱有几个底面?有多
15、少条高? 二、导入新课 教师:请大家想一想,在学习圆的面积时,我们是怎样把因变成已学过的图形再计算面积的? 先让学生回忆,同桌的相互说说。 然后指名学生说一说圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆的面积和所拼成的长方形面积之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。 教师:怎样计算圆柱的体积呢?大家仔细想想看,能不能把圆柱转化成我们已经学过的图形来求出它的体积? 让学生相互讨论,思考应怎样进行转化。 指名学生说说自己想到的方法,有的学生可能会说出将圆柱的底面分成扇形切开,教师应该给予表扬。 教师:这节课我们就来研究如何将圆柱转化成我们已经学过的
16、图形来求出它的体积。板书课题:圆校的体积三、新课1、圆柱体积计算公式的推导。教师出示一个圆柱,提问:这是不是一个圆柱?(是。) 教师用手捂住圆柱的侧面,只把其中的一个底面出示给学生看提问:“大家看,这是不是一圆?”(是。)“这是一个圆,那么要求这个圆的面积,刚才我们已经复习了,可以用什么方法求出它的面积?” 学生很容易想到可以将圆转化成长方形来求出圆的面积,于是教师可以先把底面分成若干份相等的扇形(如分成16等份)。 然后引导学生观察:沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块。 教师将这分成16块的底面出示给学生看,问:现在把底面切成了16份,应该怎样把它拼成一个长方形
17、? 指名学生回答后,老师进行操作演示,先只把底面部分拿给学生看,。大家看,圆柱的底面被拼成了什么图形?” 学生:长方形。 教师:大家再看看整个圆柱,它又被拼成了什么形状? (有点接近长方体:) 然后教师指出:由于我们分得不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。 教师:把圆柱拼成近似的长方体后,体积发生变化没有?圆柱的体积可以怎样求? 引导学生想到由于体积没有发生变化,所以可以通过求切拼后的长方体的体积来求圆柱的体积。 教师:“而长方体的体积等于什么?”让全斑学生齐答,教师接着板书:“长方体的体积底面积高”。 教师:请大家观察教具,拼成的近似长方体
18、的底面积与原来圆柱的哪一部分有关系?近似长方体的高与原来圆柱的哪一部分有关系? 通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 板书:圆柱的体积底面积高 教师:如果用V表示圆柱的体积,S表示圆柱的底面积,H表示圆柱的高,可以得到圆柱的体积公式; VSH 2、教学例4。 (1)教师指名学生分别回答下面的问题: 这道题已知什么?求什么? 能不能根据公式直接计算? 计算之前要注意什么? 通过提问,使学生明确计算时既要分析已知条件和问题,还要注意要先统一计量单位。 (2)出示下面几种解答方案,让学生判断哪个是正确的? VSH502.1105 答:它的体积是105立方厘米
19、。 2.1米;210厘米 VSH5021010500 答:它的体积是10500立方厘米。 50平方厘米0,5平方米 VSH0.52,11.05 答:它的体积是1.05立方米。 50平方厘米0.005平方米 VSH0.0052.10.0105立方米 答:它的体积是0.0105立方米。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单。对不正确的第、种解答要说说错在什么地方。三、练习: 1、做“做一做”的第1题。 让学生独立做在练习本上,做完后集体订正。2、完成练习八的1、2题这两道题分别是已知底面积(或直径)和高,求圆柱体积的习题。要求学生审题后,知道底面直径的要先求出
20、底面积,再求圆柱的体积。 4、圆柱体积计算的应用 教学内容:教科书第37页的例5,完成“做一做”的第2题和练习八的第37题。 教学目的:使学生掌握圆柱体积的计算公式,并能运用公式解决一些简单的实际问题。 教具准备:一个圆柱形物体,一个圆柱形杯子。教学过程:一、复习1、口算。出示练习八的第3题4.5 十 0.37 0.258 4.8十 2.97.29 6.14.8 - 2,复习圆柱的体积。 教师:我们是怎样得到圆柱体积的计算公式的?圆柱体积的计算公式是什么? 指名学生叙述一下圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。圆柱体积的计算公式是“底面积高”,即:VSH
21、二、新课 1、教学圆柱体积公式的另一种形式。 教师:请大家想一想,如果已知圆柱底面的半径r和高H,圆柱体积的计算公式 应该怎样表达? 引导学生根据底面积S与半径r的关系可以知道:SR R,所以圆柱体积的计算公式也可以写成:VRRH。2、教学例5。 (1)教师提出下面问题帮助学生理解题意:这道题已知什么?求什么?求水桶的容积是什么意思?根据什么公式?为什么?要使学生理解水桶的容积就是水桶能容纳物体的体积,求水桶的容积就是求这个圆柱形水桶内部的体积。所以可以根据圆柱体积的计算公式来计算。 要求水桶的容积应该先求什么? 要使学生明确,水桶的底面积在题中没有直接给出,因此要先求水桶的底面积,再求水桶的
22、容积。 水桶的底面积应该怎样求? (2)让学生叙述解答过程,教师板书。 求出水捅容积之后,教师提问:最后结果应该怎样取值? 使学生明确要把计量单位改写成立方分米,取近似值时要采用去尾法。 (3)做一做的第2题。 让学生独立做在练习本上,做完后集体订正。 三、课堂练习 1、做练习八第4题。 这是一道实际测量、计算的题目,可以分组进行测量和计算,每组的茶杯可以是不一样的。教师可以先让学生讲一下自己的测量方法,再进行测量和计算。 学生测量时,教师行间巡视,注意察看学生测量的方法是否正确,对有困难的学,生要及时给予指导。 做完后集体订正,要注意强调不能只计算出茶杯的体积,还要计算出可以装多少克水,以及
23、取近似数的方法。 2、做练习八的第5题。 读题后教师可以先后提问: “这道题要求的是什么?” “题目只告诉了圆柱形粮食囤的底面半径和高,要求这个粮囤能装稻谷多少立方米,应该先求什么?怎样求?” 指名学生回答后,再让学生独立做在练习本上,教师巡视。做完后集体订正,强调得数的取舍方法。3、做练习八第6题。教师:这道题已知什么?求什么?指名学生回答后,再问:应该怎样求?引导学生从圆柱的体积计算公式入手,可以直接用算术方法计算,也可以列方程来解答。 4、做练习八的第7题。 读题后,教师可提出以下问题: “这道题要求的是什么?” “怎样利用已知条件求出这个油桶的容积?” “题目中的条件和问题的单位不统一
24、。应该怎样改写更简便?”分别指名学生回答。要使学生明白,这里可以先将40厘米和50厘米分别改写成4分米和5分米计算更简便。 让学生独立做在练习本上,教师行间巡视,注意察看学生对圆柱体积计算方法是否掌握,计量单位是否按照题目的要求进行改写,最后得数的取舍是否正确。 做完后集体订正,指名学生说说自己是怎样计算的。 5、圆锥的认识 教学内容:教科书第4142页的内容,完成“做一做”和练习九的第l一2题。 教学目的:使学生认识圆锥,掌握圆锥的特征,会看圆锥的平面图。 教具准备:要求每个学生用教科书图样做一个圆锥的模型,并让学生收集一些圆锥形的实物,教师准备一个圆锥形物体,一块平板(或玻璃),一把直尺。
25、教学过程: 一、复习 1、提问:圆柱体积的计算公式是什么? 2、圆柱的特征是什么?二、导入新课 教师:我们已经学习了圆柱的有关知识。请大家拿出自己准备好的跟老师一样的物体,看一看,摸一摸,你们感觉它与圆柱有什么不一样? 三、新课 1、圆锥的认识。 让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果。从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆,等等。 教师指出:像这样的物体就叫做圆锥体,简称圆锥。这节课我们就来学习这种新的立体图形: 板书谋题:圆锥 教师:大家门才认识了圆锥形的物体,我们把这些物体画在投影片上。 出示有圆锥形物体的投影片。 教师:现在我们沿着这些圆锥形物体的
26、轮廓画线,就可以得到这样的图形。 随后教师抽拉投影片,演示得到圆锥形物体的轮廓线。 然后指出:这样得到的图形就是圆锥体的几何图形。 教师指出:圆锥有一个顶点,它的底面是一个圆。 然后在图上标出顶点,底面及其圆心O。 同时还要指出:我们所学的圆锥是直圆锥的简称。 接着让学生用手摸一摸圆锥周围的面,使学生发现圆锥有一个曲面。由此指出:圆锥的这个曲面叫做侧面。(在图上标出侧面。) 让学生看着圆锥形物体,指出:从圆锥的顶点到底面圆心的距离叫做高。然后在图上标出高。教师顺着母线的方向演示。问:这条线是圆锥的高吗?指名学生回答后,教师要指出:沿着曲面上的线都不是圆锥的高。教师:圆锥的高到底有多少条呢?引导
27、学生根据高的定义,弄清楚由于圆锥只有一个顶点,所以圆锥只有一条高。然后让学生拿出自己的学具,同桌的两名同学相互指出圆锥的底面、侧面和顶点,注意提醒学生圆锥的高是不能摸到的。 2、小结。 圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是底面是圆,侧面是一个曲面,有一个顶点和一条高。 3、测量圆锥的高。 教师:由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助块平板来测量。教师边演示边叙述测量过程:(1)先把圆锥的底面放平;(2)用一块平板水平地放在圆锥的顶点上面;(3)竖直地量出乎板和底面之间的距离。测量的时候一定要注意:(1)圆锥的底面和平板都要水平地放置
28、;(2)读数时一定要读平板下沿与直尺交会处的数值。 4、教学圆锥侧面的展开图。 教师:圆锥的侧面是哪一部分? 教师展示圆锥模型,指名学生说出侧面部分。 教师:我们已经学习过圆柱,哪位同学能说一说圆柱的侧面展开后是什么图形? 学生回答出圆柱的侧面展开图是长方形后,教师设问:那么,请大家想一想,圆锥的侧面展开后会是什么图形呢?” 留给学生短暂的思考讨论时间后,教师指出:下面我们通过实验来看看圆锥的侧 面展开后是一个什么图形。 然后教师指导学生把圆锥模型的侧面展开,使学生看到圆锥的侧面展开后是一个扇形。展开后还可以再把它合拢,恢复原状,使学生加深对圆锥侧面的认识。 四、课堂练习 1做“做一做”的题目
29、。 让学生拿出课前准备好的模型纸样先做成圆锥,然后让学生试着独立量出它的底面直径。教师行间巡视,对有困难的学生及时辅导。 2、做练习九的第1题。 让学生自由地想,只要是接近于圆锥的都可以视为是圆锥。 3、做练习九的第2题。 这道题是培养学生拆分组合图形的能力,使学生能将一个组合图形拆成已经学过的。 读题后,教师提问: 6、圆锥的体积教学内容:教科书第4243页的例1、例2,完成“做一做”和练习九的第35题。教学目的:使学生初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,发展学生的空间观念。教具准备:等底等高的圆柱和圆锥各一个,比圆柱体积多的沙土(最好让学生也准备)教学过程: 一、
30、复习 1、圆锥有什么特征? 使学生进一步熟悉圆锥的特征:底面,侧面,高和顶点。 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积底面积高”。 二、导人新课 我们已经学过圆柱体积的计算公式,那么圆锥的体积又该如何计算呢?今天我们就来学习圆锥体积的计算。 板书课题:圆锥的体积 三、新课 1、教学圆锥体积的计算公式。 教师:请大家回亿一下,我们是怎样得到圆柱体积的计算公式的? 指名学生叙述圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的。 教师:那么圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢? 先让学生讨论一下用什么方法求,然后指出:我们可
31、以通过实验的方法,得到计算圆锥体积的公式。 教师拿出等底等高的圆柱和圆锥各一个,“大家看,这个圆锥和圆柱有什么共同的地方?” 然后通过演示后,指出:“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?” 接着,教师边演示边叙述:现在圆锥和圆柱里都是空的。我先在圆锥里装满沙土,然后倒入圆柱。请大家注意观察,看看能够倒几次正好把圆柱装满?问:把圆柱装满一共倒了几次?学生:3次。教师:这说明了什么? 学生:这说明圆锥的体积是和它等底等高的圆柱的体积的 。 板书:圆锥的体积1/3 圆柱体积 教师:圆柱的体积等于什么?学生:等于“底面积高”。教师:那么,圆锥的体积可以怎样表示呢
32、?引导学生想到可以用“底面积高”来替换“圆柱的体积”,于是可以得到圆锥体积的计算公式。 板书:圆锥的体积 1/3 底面积高 教师:用字母应该怎样表示? 然后板书字母公式:V1/3 SH 2、教学例1。 教师:这道题已知什么?求什么? 指名学生回答后,再问:已知圆锥的底面积和高应该怎样计算? 引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。 3、做第50页“做一做”的第1题。 让学生独立做在练习本上,教师行间巡视。 做完后集体订正。 4、教学例2。 教师:这道题已知什么?求什么? 学生:已知近似于圆锥形的麦堆的底面直径和高,以及每立方米小麦的重量;求这堆小麦的重量
33、。教师:要求小麦的重量,必须先求出什么?学生:必须先求出这堆小麦的体积。教师:要求这堆小麦的体积又该怎么办?学生:由于这堆小麦近似于圆锥形,所以可利用圆锥的体积公式来求。教师:但是题目的条件中不知道圆锥的底面积,应该怎么办。?学生:先算出麦堆的底面半径,再利用圆的面积公式算出麦堆的底面积,然后根据圆锥的体积公式求出麦堆的体积。 教师:求得小麦的体积后应该怎样求小麦的重量? 学生:用每立方米小麦的重量乘以小麦的体积就可以求得小麦的重量。 分析完后,指定两名学生板演其余学生将计算步骤写在教科书第50页上。做完后集体订正,注意学生最后得数的取舍方法是否正确。教师要说明小麦每立方米的重量随着含水量的不
34、同而不同,要经过量才能确定,735千克并不是一个固定的常数(2)组织学生讨论,怎样测量小麦堆的底面直径和高? 讨论后先让学生说出自己的想法然后教师再介绍一下测量的方法:测量底面直径时。可以用两根竹竿平行地放在小麦堆两侧,测量出两根竹竿间的距离就是底面直径:也可以用绳子在底部圆的周围围上一圈量得小麦堆的周长,再算出直径。测量小麦堆的高。可用两根竹竿将一根竹竿过小麦堆的顶部水平放置,另一根竹竿竖直与水平的竹竿成直角即可量得高。5、做“做一做”的第2题。 教师:这道题应该先求什么? 学生:要先求圆锥的底面积。让学生做在练习本上,教师行间巡视。做完后集体订正。 四、小结(略)五、课堂练习 1、做练习九
35、的第3题。 指定3名学生在黑板上板演,其余学生做在练习本上。 集体订正时让学生说一说自己的计算方法。 2,做练习九的第4题。 教师可以让学生回答以下问题: (1)这道题已知什么?求什么? (2)求圆锥的体积必须知道什么? (3)求出这堆煤的体积后,应该怎样计算这堆煤的重量? 然后让学生做在练习本上,教师巡视,做完后集体订正。 3、做练习九的第5题。 教师指名学生先后回答下面问题: (1)圆柱的侧面积等于多少? (2)圆柱的表面积的含义是什么?怎样计算? (3)圆柱体积的计算公式是什么? (4)圆锥的体积公式是什么? 然后,让学生把计算结果填写在教科书第51页的表格中。做完后集体订正。7、圆锥体
36、积的练习教学内容:教科书练习九的第69题。教学目的:通过练习,使学生进一步熟悉圆锥的体积计算。教学过程:一、复习1、圆锥的体积公式是什么? 二、课堂练习 1、做练习九的第6题。 教师出示一个圆锥形物体,让学生想一想怎样测量才能计算出它的体积: 让学生分组讨论一下,然后各自让一名学生说说讨论的结果,最后归纳出底面圆的周长,再求出底面的半径,进而求出底面积,然后用书上介绍的方法,用直尺和三角板 测量出圆锥的高,这样就可以求出圆锥的体积。 2、做练习九的第7题。 读题后,教师可以先后提问: “这道题已知什么?求什么? “要求这堆沙的重量,应该先求什么?怎样求?” 指名学生回答后,让学生做在练习本上,
37、做完后集体订正。 3、做练习九的第8题。 读题后,教师可提出以下问题: “这道题要求的是什么?” “要求这段钢材重多少千克,应该先求什么?怎样求?” “能直接利用题目中的数值进行计算吗?为什么?” “题目中的单位不统一,应该怎样统一?” 分别指名学生回答后,要使学生明白这里要先将2米改写成200厘米,再利用圆柱的体积计算公式算出钢材的体积是多少立方厘米,然后再求出它的重量。最后计算出的结果还应把克改写成千克。4、做练习九的第9题。读题后,教师提问:这道题要求粮仓装小麦多少吨,应该先求什么?要使学生明白,应该先求2.5米高的小麦的体积,而不是求粮仓的体积。让学生独立做在练习本上,做完后集体订正。
38、三、选做题让学有余力的学生做练习九的第10*、11*、12*题。1.练习九的第10*题。教师:这道题要求圆锥的体积但是题目中没有告诉底面积,而只是已知底 面周长和高。请大家想一想,应该怎样求出底面积? 引导学生利用“C2r”再利用“SR,就可以求得S( )。再利用圆锥的体积公式就可以求出其体积。 2、练习九的第11*题。 这是一道有关圆柱、圆锥体积的比例应用题。 可以用列方程来解答。利用题目中圆锥和圆柱的体积之比,可以建立一个比例式。 设圆柱的高为x厘米(注意:由于圆锥和圆柱的底面积S都相等,所以计算中可以先把S约去。)3.练习九的第12题。这道题是拆分组合图形,引导学生仔细分析图形,不难看出
39、它是由等底的圆柱和圆锥组合而成的:从图中可以看出,圆柱和圆锥的底面直径都是16厘米,而圆柱的高是4厘米,圆锥的高是17厘米。然后再根据圆的面积公式及圆柱和圆锥的体积公式,就可以求出这个组合图形的体积了。 整理和复习教学要求:通过整理和复习,掌握圆柱和圆锥的特点,求圆柱圆锥体积的计算公式。能区别圆柱、圆锥,正确计算圆柱圆锥的体积,建立空间观念。教学重点:使学生了解圆柱圆锥的特点,求圆柱圆锥的体积。教学难点:形成表象,建立空间观念。教学过程:(一)整理 (1)圆柱 圆柱的特点 圆柱的各部分名称 圆柱表面积 圆柱的体积 V=Sh (2)圆锥 圆锥的特点 圆锥的各部分名称 圆锥的体积 V=-1/3Sh
40、 (二)随堂练习 1、第48页1-3圆柱内容 填书。 练习十第1、2题,第3体求圆柱的体积。 2、第48页4-6题圆锥的内容,填书。 练习十第3题求圆锥的体积。板书设计:整理和复习 特征 圆柱 各部分名称 表面积=两个底面积=侧面积 体积=V=Sh 特征 圆锥 各部分名称 体积V=1/3Sh 圆柱和圆锥整理和复习第 课时教学内容:圆柱认识及其表面积的计算教学目标;1、 园柱各部分的名称及其意义2、 计算侧面积、表面积,及其具体情况下的对策,掌握其具体方法教学过程;一、 展示圆柱体圆锥体的侧面展开过程1、 学生动手操作展示底面周长2、 由学生一边动手,一边解释。特别重视底面周长、高的特点,与长方
41、形的长、宽关系形成侧面积的公式过程。3、 学生填写各部分的名称(半径、高、底面周长)学生可画草图说明二、 表面积的认识及计算 1、圆柱的表面积的组成,根据具体的情况可能是(1)表面积=侧面积+2底面积 (2)表面积=侧面积+底面积 (3)表面积=侧面积 由学生口述在什么情况下是产生的,由学生具体展示3、 表面积的计算(1)r=5cm h =10cm s= (2)d=10cm h=10cm s=(3)c=31.4dm h=0.1m s= (4)一个汽油桶的底面半径是20厘米,高是2米,要做这样有盖的一对油桶需要铁皮多少平方米?如果每平方米的铁皮重1.5千克,这个油桶重多少千克?(5)一段圆柱形烟筒长1.5米,横截面半径是10厘米。做10节这样的烟筒需多少铁皮?(6)、做一对无盖的圆柱形水桶,一只水桶的底面半径是30厘米,高45厘米,做这对水桶需要多少平方米的铁皮?(7)、一个圆柱侧面积是个正方形,这个正方形的边长是5厘米(或面积是400平方厘米),那么这个圆柱的表面积是多少?第 课时教学内容:圆柱和圆柱的体积教学目标:1、掌握圆柱和圆锥的体积计算。 2、能求与圆柱有关的一些问题。 3、实际运用。教学重难点:重点-圆柱体积计算。