1、糖原合成和糖原分解2009-10-27 09:14糖原是体内糖的储存形式,主要以肝糖原、肌糖原形式存在。肝糖原的合成与分解主要是为了维持血糖浓度的相对恒定;肌糖原是肌肉糖酵解的主要来源。糖原由许多葡萄糖通过-1,4-糖苷键(直链)及-1,6-糖苷键(分枝)相连而成的带有分枝的多糖(图6-11),存在于细胞质中。糖原合成(glycogenesis)是由葡萄糖合成糖原的过程。反之,糖原分解(glycogenolysis)则是指肝糖原分解为葡萄糖的过程。糖原合成及分解反应都是从糖原分支的非还原性末端开始,分别由两组不同的酶催化。一、 糖原合成糖原合成首先以葡萄糖为原料合成尿苷二磷酸葡萄糖(uridi
2、ne diphosphate glucose,UDP-Glc),在限速酶糖原合酶(glycogen synthase)的作用下,将UDP-Glc转给肝、肌肉中的糖原蛋白(glycogenin)上,延长糖链合成糖原。其次糖链在分支酶的作用下再分支合成多支的糖原。反应可以分为二个阶段:第一阶段:糖链的延长 游离的葡萄糖不能直接合成糖原,它必须先磷酸化为G-6-P再转变为G-1-P,后者与UTP作用形成UDP-Glc及焦磷酸(PPi)。UDP-Glc是糖原合成的底物,葡萄糖残基的供体,称为活性葡萄糖。UDP-Glc在糖原合酶催化下将葡萄糖残基转移到糖原蛋白中糖原的直链分子非还原端残基上,以-1,4-
3、糖苷键相连延长糖链。第二阶段:糖链分支糖原合酶只能延长糖链,不能形成分支。当直链部分不断加长到超过11个葡萄糖残基时,分支酶可将一段糖链(至少含有6个葡萄糖残基)转移到邻近糖链上,以-1,6-糖苷键相连接,形成新的分支(图6-13),分支以-1,4-糖苷键继续延长糖链。糖原蛋白是一个分子质量为37 kDa的蛋白质,它既是糖链延长的引物,又具有酶活性,在糖原合成起始中具有重要作用(图6-15)。UDP-Glc提供的一个葡萄糖残基和糖原蛋白上的酪氨酸残基进行共价连接,这一步是由糖原蛋白本身具有的糖基转移酶(glucosyltransferase)所催化的。结合了一个葡萄糖残基的糖原蛋白和糖原合酶一
4、起三者形成一个牢固的复合物,以后的反应都在这个复合物上进行。UDP-Glc在糖基转移酶催化下提供葡萄糖残基,糖原合酶催化合成,以-1,4-糖苷键延长,形成7个葡萄糖残基以上的短链。随着糖链的延长,糖原合酶最终和糖原蛋白分离。在糖原合酶和分支酶的联合作用下完成糖原的合成,糖原蛋白仍然保留在糖原分子中。糖原合酶是糖原合成的限速酶,是糖原合成的调节点。糖原蛋白每增加一个葡萄糖残基要消耗2分子ATP(葡萄糖磷酸化以及生成UDP-Glc)。二、糖原分解在限速酶糖原磷酸化酶(glycogen phosphorylase)的催化下,糖原从分支的非还原端开始,逐个分解以-1,4-糖苷键连接的葡萄糖残基,形成G
5、-1-P。G-1-P转变为G-6-P后,肝及肾中含有葡萄糖-6-磷酸酶,使G-6-P水解变成游离葡萄糖,释放到血液中,维持血糖浓度的相对恒定。由于肌肉组织中不含葡萄糖-6-磷酸酶,肌糖原分解后不能直接转变为血糖,产生的G-6-P在有氧的条件下被有氧氧化彻底分解,在无氧的条件下糖酵解生成乳酸,后者经血循环运到肝脏进行糖异生,再合成葡萄糖或糖原。当糖原分子的分支被糖原磷酸化酶作用到距分支点只有4个葡萄糖残基时,糖原磷酸化酶不能再发挥作用。此时脱支酶发挥作用,脱支酶具有转寡糖基酶和-1,6-葡萄糖苷酶两个酶活性:转寡糖基酶将分支上残留的3个葡萄糖残基转移到另外分支的末端糖基上,并进行-1,4-糖苷键
6、连接;而残留的最后一个葡萄糖残基则通过-1,6-葡萄糖苷酶水解,生成游离的葡萄糖;分支去除后,糖原磷酸化酶继续催化分解葡萄糖残基形成G-1-P。三、糖原合成与糖原分解的调节在肌肉中糖原的合成与分解主要是为肌肉提供ATP;在肝脏,糖原合成、糖原分解主要是为了维持血糖浓度的相对恒定。它们的作用受到肾上腺素、胰高血糖素、胰岛素等激素的影响:肾上腺素主要作用于肌肉;胰高血糖素、胰岛素主要调节肝脏中糖原合成和分解的平衡。糖原合酶与糖原磷酸化酶分别是糖原合成和糖原分解的限速酶,糖原磷酸化酶和糖原合酶的活性不会同时被激活或同时抑制,它们可以通过别构调节和共价修饰调节两种方式进行活性的调节。(一) 糖原磷酸化
7、酶活性调节糖原磷酸化酶以a、b两种形式存在。在糖原磷酸化酶激酶及ATP存在下,在糖原磷酸化酶b的丝氨酸残基进行磷酸化修饰,使无活性的糖原磷酸化酶b转变成有活性的糖原磷酸化酶a。糖原磷酸化酶a可经磷蛋白磷酸酶作用使其丝氨酸残基脱去磷酸,成为无活性的糖原磷酸化酶b。在肌肉剧烈运动时,糖原磷酸化酶的活性是受到肾上腺素的调节。肾上腺素通过信号转导系统使cAMP的浓度提高,激活A激酶使无活性的糖原磷酸化酶激酶b磷酸化成为有活性的糖原磷酸化酶激酶a,糖原磷酸化酶激酶a进一步使无活性的糖原磷酸化酶b成为有活性的糖原磷酸化酶a,促进糖原分解,产生能量。当肌肉剧烈运动时,肌糖原分解增加,这过程也涉及是二个别构调
8、节机制。一个是Ca2+的别构调节:Ca2+是肌肉运动的信号,它结合并别构糖原磷酸化酶激酶b使其具有活性,促进无活性的糖原磷酸化酶b转变为有活性的糖原磷酸化酶a。另一个是AMP和ATP的别构调节:AMP在剧烈运动的肌肉中积聚,别构激活糖原磷酸化酶;当ATP足够时,ATP和别构位点结合,使糖原磷酸化酶失活。在肝脏中,糖原磷酸化酶的活性调节主要受胰高血糖素调节,当血糖浓度降低到一定程度,通过胰高血糖素形成cAMP,激活A激酶使磷酸化酶激酶b成为磷酸化酶激酶a,催化无活性的磷酸化酶b转变为有活性的磷酸化酶a,促使肝糖原分解成葡萄糖释放到血液中,达到升血糖目的。在肝脏中糖原磷酸化酶的活性也存在着别构调节
9、机制。当血糖浓度恢复正常,葡萄糖进入肝细胞并和糖原磷酸化酶a的别构位点结合,使糖原磷酸化酶a上磷酸化的丝氨酸残基暴露给糖原磷酸化酶a磷酸酶,糖原磷酸化酶a脱磷酸成无活性的糖原磷酸化酶b,此时葡萄糖是别构剂。(二)糖原合成酶活性的调节糖原合酶也分为a、b两种形式。糖原合酶a具有活性。糖原合酶a被磷酸化转变成无活性的糖原合酶b。在磷蛋白磷酸酶的作用下,无活性的糖原酶b脱磷酸转变为有活性的糖原合酶a。糖原磷酸化酶和糖原合酶的活性在磷酸化与去磷酸化作用下相互调节,一个酶被激活,另一个酶活性被抑制,二个酶不会同时被激活或同时抑制。糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b,它们的脱磷酸均由磷蛋白磷酸
10、酶催化。磷蛋白磷酸酶可与磷蛋白磷酸酶抑制物结合而失去活性,以保证糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b维持磷酸化的状态。只有磷酸化的磷蛋白磷酸酶抑制物才能和磷蛋白磷酸酶结合而使磷蛋白磷酸酶失去活性。因此cAMP激活A激酶,不仅促进糖原磷酸化酶激酶b磷酸化成为糖原磷酸化酶激酶a、磷酸化酶b磷酸化成为磷酸化酶a,又通过磷蛋白磷酸酶抑制剂的磷酸化,达到抑制磷蛋白磷酸酶对糖原磷酸化酶激酶a、糖原磷酸化酶a和糖原合酶b脱磷酸化的目的,最终促进糖原分解,抑制糖原合成。中酶的磷酸化与去磷酸化使酶活性相应改变,构成一组连续的、级联式(cascade)的酶促反应过程,各级反应不仅都可被调节,而且有放大效应。这种调节机制有利于机体针对不同生理状况作出反应。四、糖原贮积病糖原贮积病(glycogen storage disease)是一类遗传性疾病,表现为异常种类和数量的糖原在组织中沉积,产生不同类型的糖原贮积病,每种类型表现为糖原代谢中的一个特定的酶缺陷或缺失而使糖原贮存,由于肝脏和骨骼肌是糖原代谢的重要部位,因此是糖原贮积病的最主要累及部位.肝脏、肌肉。