收藏 分销(赏)

数学:2.1《合情推理与演绎证明》教案2013-10-30.docx

上传人:仙人****88 文档编号:7170599 上传时间:2024-12-27 格式:DOCX 页数:5 大小:176.49KB
下载 相关 举报
数学:2.1《合情推理与演绎证明》教案2013-10-30.docx_第1页
第1页 / 共5页
数学:2.1《合情推理与演绎证明》教案2013-10-30.docx_第2页
第2页 / 共5页
数学:2.1《合情推理与演绎证明》教案2013-10-30.docx_第3页
第3页 / 共5页
数学:2.1《合情推理与演绎证明》教案2013-10-30.docx_第4页
第4页 / 共5页
数学:2.1《合情推理与演绎证明》教案2013-10-30.docx_第5页
第5页 / 共5页
亲,该文档总共5页,全部预览完了,如果喜欢就下载吧!
资源描述

1、第一课时 2.1.1 合情推理(一)教学要求:结合已学过的数学实例,了解归纳推理的含义,能利用归纳进行简单的推理, 体会并认识归纳推理在数学发现中的作用.教学重点:能利用归纳进行简单的推理.教学难点:用归纳进行推理,作出猜想.教学过程:一、新课引入:1. 哥德巴赫猜想:观察4=2+2, 6=3+3, 8=5+3, 10=5+5, 12=5+7, 12=7+7, 16=13+3, 18=11+7, 20=13+7, , 50=13+37, , 100=3+97,猜测:任一偶数(除去2,它本身 是一素数)可以表示成两个素数之和. 1742年写信提出,欧拉及以后的数学家 无人能解,成为数学史上举世闻

2、名的猜想. 1973年,我国数学家陈景润,证明 了充分大的偶数可表示为一个素数与至多两个素数乘积之和,数学上把它称为 “1+2”. 2. 费马猜想:法国业余数学家之王费马(1601-1665)在1640年通过对, ,的观察,发 现其结果都是素数,于是提出猜想:对所有的自然数,任何形如的 数都是素数. 后来瑞士数学家欧拉,发现 不是素数,推翻费马猜想.3. 四色猜想:1852年,毕业于英国伦敦大学的弗南西斯.格思里来到一家科研单位搞地图着 色工作时,发现了一种有趣的现象:“每幅地图都可以用四种颜色着色,使得 有共同边界的国家着上不同的颜色.”,四色猜想成了世界数学界关注的问 题.1976年,美国

3、数学家阿佩尔与哈肯在美国伊利诺斯大学的两台不同的电子 计算机上,用1200个小时,作了100亿逻辑判断,完成证明.4.哥尼斯堡七桥问题:18世纪著名古典数学问题之一。在哥尼斯堡的一个公园里,有七座桥将普雷格尔河中两个岛及岛与河岸连接起来(如图)。问是否可能从这四块陆地中 任一块出发,恰好通过每座桥一次,再回到起点?欧拉于1736年研究并解决了此问题,他把问题归结为如下右图的“一笔画”问题,证明上述走法是不可能的。 18世纪初普鲁士的柯尼斯堡,普雷格尔河流经此镇,奈发夫岛位于河中,共有7座桥横跨河上,把全镇连接起来。当地居民热衷于一个难题:是否存在一条路线,可不重复地走遍七座桥。这就是柯尼斯堡七

4、桥问题。一笔划:凡是由偶点组成的连通图,一定可以一笔画成。画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。 凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。画时必须把一个奇点为起点,另一个奇点终点。 其他情况的图都不能一笔画出。(奇点数除以二便可算出此图需几笔画成。)二、 讲授新课:1.蛇是用肺呼吸的,鳄鱼是用肺呼吸的,海龟是用肺呼吸的,蜥蜴是用肺呼吸的。蛇,鳄鱼,海龟,蜥蜴都是爬行动物,所有的爬行动物都是用肺呼吸的。2.三角形的内角和是,凸四边形的内角和是,凸五边形的内角和是由此我们猜想:凸边形的内角和是3.,由此我们猜想:(均为正实数)这种由某类事物的部分对象具有某

5、些特征,推出该类事物的全部对象都具有这些特征的推理,或者由个别事实概栝出一般结论的推理,称为归纳推理.(简称:归纳) 简言之,归纳推理是由部分到整体、由个别到一般的推理.归纳推理的一般步骤: 对有限的资料进行观察、分析、归纳 整理; 提出带有规律性的结论,即猜想; 检验猜想。 实验,观察概括,推广猜测一般性结论 归纳练习:(i)由铜、铁、铝、金、银能导电,能归纳出什么结论?(ii)由直角三角形、等腰三角形、等边三角形内角和180度,能归纳出什么结论?(iii)观察等式:,能得出怎样的结论? 讨论:(i)统计学中,从总体中抽取样本,然后用样本估计总体,是否属归纳推理?(ii)归纳推理有何作用?

6、(发现新事实,获得新结论,是做出科学发现的重要手段)(iii)归纳推理的结果是否正确?(不一定)2. 教学例题: 已知数列的第1项,且,试归纳出通项公式.(分析思路:试值n=1,2,3,4 猜想 如何证明:将递推公式变形,再构造新数列) 思考:证得某命题在nn时成立;又假设在nk时命题成立,再证明nk1时命题也成立. 由这两步,可以归纳出什么结论? (目的:渗透数学归纳法原理,即基础、递推关系) 练习:已知 ,推测的表达式.例1已知数列的通项公式,试通过计算的值,推测出的值。()1、已知,经计算: ,推测当时,有_.2、已知:,。观察上述两等式的规律,请你写出一般性的命题,并证明之。3、观察(

7、1)(2)。由以上两式成立,推广到一般结论,写出你的推论。3. 小结:归纳推理的药店:由部分到整体、由个别到一般;典型例子:哥德巴赫猜想的提出;数列通项公式的归纳.第二课在此处键入公式。时 合情推理(二)教学重点:了解合情推理的含义,能利用归纳和类比等进行简单的推理.教学难点:用归纳和类比进行推理,作出猜想.教学过程:一、复习准备:1. 练习:已知 ,考察下列式子: ;. 我们可以归纳出,对也成立的类似不等式为 .2. 猜想数列的通项公式是 .二、讲授新课:1. 教学概念:导入:鲁班由带齿的草发明锯; 人类仿照鱼类外形及沉浮原理,发明潜水艇; 引例: “火星上是否有生命” 地球火星行星、围绕太

8、阳运行、绕轴自传有大气层一年中有季节变更温度适合生物的生存有生命存在 (1) 类比练习:圆的定义:平面内到一个定点的距离等于定长的点的集合. 球的定义:到一个定点的距离等于定长的点的集合. 圆 球 弦截面圆 直径大圆 周长表面积 面积体积(i) 圆有切线,切线与圆只交于一点,切点到圆心的距离等于半径. 由此结论如何类比到球体? (ii)平面内不共线的三点确定一个圆,由此结论如何类比得到空间的结论? (iii)由圆的一些特征,类比得到球体的相应特征. 例1、试将平面上的圆与空间的球进行类比.圆的性质球的性质圆心与弦(不是直径)的中点的连线垂直于弦与圆心距离相等的两弦相等;与圆心距离不等的两弦不等

9、,距圆心较近的弦较长圆的切线垂直于过切点的半径;经过圆心且垂直于切线的直线必经过切点经过切点且垂直于切线的直线必经过圆心小结:平面空间,圆球,线面.上述两个例子均是这种由两个(两类)对象之间在某些方面的相似或相同,推演出他们在其他方面也相似或相同;或其中一类对象的某些已知特征,推出另一类对象也具有这些特征的推理称为类比推理(简称类比) 简言之,类比推理是由特殊到特殊的推理类比推理的一般步骤: 找出两类对象之间可以确切表述的相似特征; 用一类对象的已知特征去推测另一类对象的特征,从而得出一个猜想; 检验猜想。即观察、比较联想、类推猜想新结论例2.在平面上,设ha,hb,hc是三角形ABC三条边上

10、的高.P为三角形内任一点,P到相应三边 的距离分别为pa,pb,pc,我们可以得到结论: 试通过类比,写出在空间中的类似结论. 讨论:以平面向量为基础学习空间向量,试举例其中的一些类比思维. 教学例题:(1) 出示例2:类比实数的加法和乘法,列出它们相似的运算性质. (得到如下表格)类比角度实数的加法实数的乘法运算结果若则运算律逆运算加法的逆运算是减法,使得方程有唯一解单位元(2)类比平面内直角三角形的勾股定理,试给出空间中四面体性质的猜想三角形四面体三角形任意两边之和大于第三边四面体的任意三个面的面积之和大于第四个面的面积 三角形的中位线等于第三边的一半,且平行于第三边四面体的中截面的面积等

11、于第四个面的面积的 1/4 ,且平行于第四个面直角三角形3个面两两垂直的四面体C903个边的长度a,b,c 2条直角边a,b和1条斜边c 90 4个面的面积 3个“直角面” 和1个“斜面” 三、巩固练习: 1已知两个圆x2+y2=1:与x2+(y-3)2=1,则由式减 去式可得上述两圆的对称轴方程.将上述命题在曲线仍然为圆的情况下加以推广,即要求得到一个更一般的命题,而已知命题应成为所推广命题的一个特例, 推广的命题为:-2定义“等和数列”:在一个数列中,如果每一项与它的后一项的和都为同一个常数,那么这个数列叫做等和数列,这个常数叫做该数列的公和。已知数列是等和数列,且,公和为5,那么的值为_

12、,这个数列的前n项和的计算公式为_ 3. 小结:归纳推理和类比推理都是根据已有的事实,经过观察、分析、比较、联想,再进 行归纳、类比,然后提出猜想的推理,统称为合情推理. 第三课时 2.1.2 演绎推理教学要求:结合已学过的数学实例和生活中的实例,体会演绎推理的重要性,掌握演绎推理的基本方法,并能运用它们进行一些简单的推理。.教学重点:了解演绎推理的含义,能利用“三段论”进行简单的推理.教学难点:分析证明过程中包含的“三段论”形式.教学过程:一、复习准备:1. 练习: 对于任意正整数n,猜想(2n-1)与(n+1)2的大小关系? 在平面内,若,则. 类比到空间,你会得到什么结论?(结论:在空间

13、中,若,则;或在空间中,若.2. 讨论:以上推理属于什么推理,结论正确吗?合情推理的结论不一定正确,有待进一步证明,有什么能使结论正确的推理形式呢?3. 导入: 所有的金属都能够导电,铜是金属,所以 ; 太阳系的大行星都以椭圆形轨道绕太阳运行,冥王星是太阳系的大行星,因此 ; 奇数都不能被2整除,2007是奇数,所以 . (填空讨论:上述例子的推理形式与我们学过的合情推理一样吗?课题:演绎推理)二、讲授新课:1. 教学概念: 概念:从一般性的原理出发,推出某个特殊情况下的结论,我们把这种推理称为演绎推理。 要点:由一般到特殊的推理。 讨论:演绎推理与合情推理有什么区别?合情推理;演绎推理:由一

14、般到特殊. 提问:观察教材P39引例,它们都由几部分组成,各部分有什么特点?所有的金属都导电 铜是金属 铜能导电已知的一般原理 特殊情况 根据原理,对特殊情况做出的判断大前提 小前提 结论“三段论”是演绎推理的一般模式:第一段:大前提已知的一般原理;第二段:小前提所研究的特殊情况;第三段:结论根据一般原理,对特殊情况做出的判断. 举例:举出一些用“三段论”推理的例子.2. 教学例题: 出示例1:证明函数在上是增函数. 板演:证明方法(定义法、导数法) 指出:大前题、小前题、结论. 出示例2:在锐角三角形ABC中,D,E是垂足. 求证:AB的中点M到D,E的距离相等. 分析:证明思路 板演:证明过程 指出:大前题、小前题、结论. 讨论:因为指数函数是增函数,是指数函数,则结论是什么?(结论指出:大前提、小前提 讨论:结论是否正确,为什么?) 讨论:演绎推理怎样才结论正确?(只要前提和推理形式正确,结论必定正确)3. 比较:合情推理与演绎推理的区别与联系?(从推理形式、结论正确性等角度比较;演绎推理可以验证合情推理的结论,合情推理为演绎推理提供方向和思路.)三、巩固练习:1. 练习:P42 2、3题 2. 探究:P42 阅读与思考 3.作业:P44 6题,B组1题.第 - 5 - 页 共 5 页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服