收藏 分销(赏)

实验和密度泛函理论分析阿维菌素的热解机理.pdf

上传人:自信****多点 文档编号:708011 上传时间:2024-02-18 格式:PDF 页数:8 大小:2.03MB
下载 相关 举报
实验和密度泛函理论分析阿维菌素的热解机理.pdf_第1页
第1页 / 共8页
实验和密度泛函理论分析阿维菌素的热解机理.pdf_第2页
第2页 / 共8页
实验和密度泛函理论分析阿维菌素的热解机理.pdf_第3页
第3页 / 共8页
亲,该文档总共8页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、DOI:10.1016/S1872-5813(23)60367-6Analyzing the pyrolysis mechanism of avermectin via experiments anddensity functional theoryZHOUHao1,LIUSu-xiang1,*,ZHAOBao-feng1,WANGJing-wei2,GUANHai-bin1,ZHUDi1,*,LIHuan1,SONGAn-gang1(1.Key Laboratory for Biomass Gasification Technology of Shandong Province,Energy

2、 Research Institute,Qilu University ofTechnology(Shandong Academy of Sciences),Jinan 250014,China;2.Department of Chemical Engineering,Monash University,Clayton 3800,Australia)Abstract:Inthisstudy,thethermaldegradationmechanismofavermectin(AVM)wasanalyzedviaexperimentsanddensityfunctionaltheorycalcu

3、lations(DFT).TheexperimentalresultsofAVMDpyrolysisindicatedthattheremovalrateofAVMresiduesreachedpeakvalueof99.88%above250C.ThemainproductofAVMpyrolysiswasalcohols.BasedontheCObondsbreaking,fourpotentialdegradationpathwayswereproposed.Thefindingsofthecalculationswereinagreementwiththoseoftheexperime

4、nts.Theseresultsprovidetheoreticalandempiricalguidanceforthedevelopmentofsafeantibioticdisposaltechnology.Key words:avermectin;avermectinmycelialdreg;densityfunctionaltheory;pyrolysis;degradationmechanismCLC number:X786Document code:AAvermectin(AVM),serving as a drug in theavermectinfamily,hasbeenwi

5、delyusedinagricultureandanimalhusbandry.Approximately810tofwetAVMDisgeneratedintheproductionof1tAVM1,whichhasahighyield,highmoisturecontent,andasmall amount of antibiotic residues24.Without safehandling,theresidualantibioticscanbetransferredandaccumulated into the environment510,leading to theevolut

6、ion and spread of bacterial resistance7,11,andposingarisktotheenvironment1215.Therefore,itiscrucial to safely dispose of AVMD to mitigateenvironmentalpollutionandassociatedhealthhazards.Thetreatmentofantibioticmycelialdregismainlyprocessed via incineration,safe landfilling,andcomposting16.However,du

7、e to the high moisturecontentandhighoutputofantimicrobialmycelialdreg,thistreatmentprocessisrathercostlyandalwaysleadsto resource waste and secondary contamination15,17.Similarly,compostingisahighlytime-consumingandinefficientmethodoftreatingantibioticmycelialdreg,associatedwithecologicalrisks.Chene

8、tal.18studiedthemixedcompostingofcephalosporinCfermentationresidue and recorded temperatures above 55 C forthreeconsecutivedays,indicatingthatthecomposthadreached the mature stage.After 110 d of maturitytreatment,thedegradationratewasonly49.1%.Lan19combinedstreptomycesAVMresidue,sludge,andcornstraw

9、powder at a dry weight ratio of 411 andinoculated the mixture with a 5%organic fertilizerfermentation agent.After 40 d of fermentation,theAVMdegradationratecouldbeincreasedto75.36%.Pyrolysishasproventobeaneffectivealternativemethod of treating antibiotic mycelial dreg andantibiotics20.Itcaneffective

10、lyeliminateinfectionsandorganic contaminants while reducing the amount ofbacterial residue.For example,Wang et al.21 foundthatallpenicillinresiduecanberemovedat600Cfortreating 30 min.Chen et al.22 used a fixed bed toeliminatepenicillinresidue;after60min,allantibioticswere pyrolyzed at a temperature

11、above 400 C.Thepyrolysisofbacterialresiduecanalsoconcentrateandstabilizeheavymetalsandrecoverhigh-valueproducts,suchasgas,liquid,andbiochar23.Incontrasttoothertreatmentmethods,thesimilarphysicochemicalpropertiesofantibioticmycelialdregsallowthemtopyrolysisindependentlyoftheantibioticdregtype24.Pyrol

12、ysisisthusapromisingmethodofsafelytreatingand utilizing resources obtained from antibioticmycelialdreg25.Received:2023-02-07;Revised:2023-03-21*Correspondingauthor.E-mail:liusxsdas.org,.TheprojectwassupportedbytheNationalKeyR&DProgramofChina(2018YFE0106400),NaturalScienceFoundationofShandongProvince

13、ofChina(ZR2019MEE069),“20 Colleges and Universities”of Jinan Science and Technology Bureau(202228123,2019GXRC046),Qilu University ofTechnology(ShandongAcademyofSciences)Science,EducationandIndustryIntegrationInnovationPilotProject(2022GH010).本文的英文电子版由Elsevier出版社在ScienceDirect上出版(http:/ to research a

14、 variety of antibiotics withcomplicated structures through trials26.Quantumchemistry calculation,based on density functionaltheory(DFT),can analyze reaction behaviors andidentify reaction mechanism at the molecular level,which,hence,serving as a compensate for thelimitations of experimental methods

15、of studying thedegradation process27.Dou et al.28 studied thephotocatalyticdegradationofamoxicillinandcefotaximeong-C3N4byDFTcalculationandfoundthatthedegradationpathwayincludedlipidationofthe-lactam ring and direct molecular fragmentation.However,thedegradationofcefotaximefirstoccurredvia de-esteri

16、fication(3-acetoxy hydrolysis),followedby the decarboxylation.The oxidative degradationmechanismofsulfamethoxazolewasstudiedbySongetal.29usingDFTcalculation.ThisreactionprocessinvolvedthebreakingofSNandSCbonds,nitrationandhydroxylationofthebenzenering,carboxylation,and opening of the oxazole ring.Pe

17、lalak et al.30investigated the oxidative breakdown of sulfonamidewiththeaidofDFTcalculations,andtheyidentified31intermediate products and suggested the potentialdegradationpathways.Thus,thepyrolysismechanismsandpathwaysofantibioticmycelialdregcouldbewell-studiedthroughcombinedwithexperimentsandDFTca

18、lculation.AVMDisthesolidwasteafterAVMproduction.Its main components are mycelium,unused culturemediumandmetabolitesproducedduringfermentationanddegradationofculturemediumaswellasasmallamount of AVM.Nowadays,only a few studies onphotolysis,hydrolysis,andstraindecompositionwerecarriedout,whilethatonth

19、ethermaldegradationofAVMisnearlyun-reported.Mushtaqetal.investigatedthephotolysisofAVMinthreedifferentsolutionswithpH 7 and obtained a variety of degradationintermediates31.Several other studies focused on theisolation and identification of AVM degradationproducts from treated crops3235.Others analy

20、zed thedecomposition of AVM degradation products bydifferent strains33,36.Therefore,this study mainlyinvestigatedthethermaldegradationofAVMthroughcombinedexperimentsandDFTcalculationtoevaluatetheeffectoftemperatureontheeliminationofAVM.1 Materials and methods 1.1 MaterialsAVMD used in this study was

21、 provided by apharmaceuticalcompany.Itwasfirstdriedinanovenat 105 C and then screened for 0.28 mm powder.AvermectinB1a(C48H72O14,Figure1)with98%puritywaspurchasedanddriedat50Cfor24hinavacuumdrying oven for subsequent experiments.PrimarypropertiesofAVMDwaslistedinTable1.HOH3CH3CH3COCH3OCH3CH3CH3CH3CH

22、2CH3CH3OHOOOO131416OO189172223242120OO1237568O8a42519151110OH1214533245 12Figure1StructuralformulaofavermectinB1aTable1PrimarypropertiesofAVMDProximateanalysisw/%Ultimateanalysiswd/%MadVdAdFCdCHNSOa2.4936.6550.4310.4431.134.714.290.1720.56M:moisture;V:volatile;A:ash;FC:fixedcarbon;ad:airdriedbasis;d

23、:drybasis,a:Determinedbydifference 1.2 Experimental methods 1.2.1 Fixed-bed experimentThe AVMD and AVM pyrolysis experimentswere conducted in a fixed-bed reaction system,asshown in Figure 2.First,2 g of raw materials wereplacedinaquartzboat,whichwashungfromthetopofaquartztubewithanironwiretokeepitou

24、tsideoftheheatingarea.Theexperimentaldevicewasconnectedand sealed.Then,the reaction furnace was heatedunder N2 atmosphere(30 mL/min)at a rate of10C/mintoreachthepyrolysistemperatureandholdit,andthetopquartzboatwasquicklyloweredtothetemperaturemeasuringpointinthecenterofthequartztube.A cryostat(with

25、a temperature maintained at0C)wasusedtocondensevolatiles(H2O,CO,CO2,CH4,H2andtar)producedduringtherapidpyrolysisof1138燃料化学学报(中英文)第51卷AVMDandAVMinthepresenceofN2.Thereactionhadadurationof30min.Thecondensablecomponents(tar)werecooledintothecollectionbottle,andthenon-condensable gases were collected in

26、 airbags.Allpyrolysisexperimentswereconductedthricetoensuretheaccuracyofexperimentaldata.Temperaturecontrol deviceFine wireGas flow controllerCylinderBiomassAirbagGaschromatographLow-temperaturethermostal condenserQuartz tubeInsulationFigure2Fixed-bedreactionsystemusedforavermectinpyrolysis 1.2.2 Ga

27、s chromatographyThegascollectedintheairbagduringpyrolysiswas analyzed using a Micro GC Fusion gaschromatograph(Infocom,Seewen,Switzerland).1.2.3 High-performance liquid chromatographyThe liquid(tar and H2O)and solid products offixed-bedpyrolysiswereweighed,andtheAVMinthisresidue was analyzed using a

28、n e2695 SeparationsModule(Waters,Milford,MA,USA)and high-performance liquid chromatography(HPLC)column(4.6mm150mm,5m;Agilent,SantaClara,CA,USA).The column temperature was 35 C,and thedetection wavelength of all target compounds was245 nm.The mobile phase was water-acetonitrile(3070,v/v),with the flo

29、w rate of 1.0 mL/min.Theinjectionvolumeoftheanalyticalsolutionwas20L,andtheelutionconditionswereisometric.Ysolid(%)=msolidcsolidm100%(1)Yliquid(%)=mliquidcliquidm100%(2)DAVM=1YsolidYliquid(3)Ysolidmsolidcsolidm Yliquid,mliquidcliquidDAVMwhere,andrepresent the residual amount of AVM in solidproducts,

30、the mass of residual solid,the residualamount of AVM in residual solid,the mass ofreactants,the residual amount of AVM in liquidproducts,themassofresidualliquid,andtheresidualamount of AVM in residual liquid after reaction,respectively 1.2.4 Gas chromatography and mass spectrometryA7890BGasChromatog

31、raphwascoupledwitha7010SeriesTriple-QuadrupoleMassSpectrometer(Agilent,Santa Clara,CA,USA)to analyze thechanges in solid and liquid products of AVMpyrolysisatdifferenttemperatures.SolidproductsofAVMpyrolysiswereplacedinamortar,groundintopowder,extractedtwiceusingdichloromethane,andthencombinedwithth

32、esolution.Thissolutionwasthen analyzed using GC and mass spectrometry(MS).GaschromatographyanalysiswasconductedinanHP-5MScapillarycolumn(30m0.25mm0.25m;Agilent,SantaClara,CA,USA).Atotalof1.0Lofhelium(99.9999%)wasintroducedasthecarrier gas under a flow rate of 0.8 mL/min usingsplitlessinjection.Theov

33、entemperatureofGCwasmaintainedat100Cfor1min,andthenincreasedto200Catarateof10C/minandfinallyto280Catarateof40C/min.Itwasmaintainedat280Cfor15min.1.3 Calculations methodInthisstudy,theCASTEPmoduleofMaterialsStudio2017wasusedtoconductmolecularmodeling,molecular configuration optimization and transitio

34、nstate calculation through TS Search.The generalizedgradient approximation method and PBE exchange-correlationfunctionaltheorywereusedwiththeself-consistentfield(SCF)toleranceof2.0106eV/atom.TheMonkhorst-Packkpoint(111)wasadoptedwithcalculating100stepsinsurfaceoptimization37.TheoptimizedresultsinTSS

35、earchoperationweresubsequentlytreatedbyasearchprotocolofcompletelinearsynchronoustransformation/quadraticsynchronous transformation(complete LST/QST)toobtainthecorrespondingreactantandproduct.Theseparameters included a 2.0 105 eV/atom SCFtolerance,9999maximumconvergenceaccuracycyclesteps,and a maxim

36、um QST of 5.In the processbetweencompletingtheLSTcalculationandsettingtheconvergence criterion,the minimum optimization oftheconjugategradientandthecalculationofmaximumQST were conducted cyclically until the calculationwascompleted37.2 Results and discussion 2.1 AVMD pyrolysis 2.1.1 AVMD pyrolysis p

37、roduct yieldsFigure3depictsthesolid,liquid,andgasproduct第8期ZHOUHaoetal.:Analyzingthepyrolysismechanismofavermectinviaexperimentsanddensity1139yields of AVMD pyrolysis at different temperatures.The conversion rate and product yield of AVMDpyrolysis were obviously influenced by temperature.Pyrolysisco

38、nversionrateincreasedfrom1%to37.1%withtheincreaseoftemperaturefrom150to350C.However,biocharproductiondecreasedfrom96.8%to60.9%,along with the elevation of gas and liquidproduct yields,where the liquid product yields aremarkedly raised from 1%to 31.2%.Therefore,elevation of temperature increases the

39、AVMDpyrolysis degree that deepens the color of solidproducts.150200250300350020406080100Yield w/%Temperature/SoildLiquidGasFigure3Yieldofresidueproductsinavermectinpyrolysisatdifferenttemperatures 2.1.2 AVM in AVMD degradation analysisFigure4showsthedegradationrateofAVMinAVMD,which increased dramati

40、cally from only11.31%at150Cto95.68%at200C.Attemperatureabove 250 C,the degradation rate only slightlyelevated.ThismeansthatmostAVMinsolidproducthad been decomposed,with only a small amount ofresidualremainingintheliquidproduct.At350C,allAVM was effectively removed and the maximumdegradationratereach

41、es99.88%.150200250300350020406080100Degradation rate/%Temperature/25030035099.599.699.799.899.9Figure4Degradationrateofavermectinresidueatdifferenttemperature 2.2 AVM pyrolysis 2.2.1 AVM degradation rate analysisFigure5showstherelationofdegradationrateofAVM with the temperature.The degradation rate

42、ofAVMincreasedsharplyfromonly8.10%at150Cto97.11%at200C,whichisconsistentwiththeresultofdegradationofAVMinAVMD.Thedegradationrateof AVM reached 99.995%at 250 C and only amarginal amount of AVM remained in the liquidproducts.Atthiscondition,AVMdegradationratewasalmostunchangedwiththetemperature,indica

43、tingthatAVMhadalmostcompletelydegraded.150200250300350020406080100Degradation rate/%Temperature/25030035099.99099.99299.99499.99699.998Figure5Degradationrateofavermectinatdifferenttemperature 2.2.2 AVM pyrolysis product yieldsIn order to analyze the thermal degradationmechanismofAVM,thepyrolysisofAV

44、Mwith98%puritywasthenperformedintherangeof150350C.The products distribution of AVM pyrolysis in thistemperature range is shown in Figure 6.With theincreaseoftemperaturefrom150to350C,theyieldofsolidproductsdecreasedfrom96.99%to22.40%,whereastheliquidandgasyieldsincreasedfrom0to66.27%and0.02%to6.59%,r

45、espectively.Theyieldofgas,inducingH2,CH4,CO,CO2,C2H6andC3H6,wasthesmallestinAVMpyrolysisproducts.At150C,thecondensable volatile products and non-condensableproducts were undetectable due to the almost nocrackingofAVM(withameltingpoint150155C).The liquid yields increased slightly at 200 C,andraised d

46、ramatically at 250 C and then graduallyelevatedwiththetemperature,thus,makingtheliquidyields much higher than the gas yields.On thecontrary,solidyieldscontinuouslydecreasedwiththetemperature.Therefore,hightemperaturecouldpromotethedecompositionofAVM.The main liquid products of AVM pyrolysis1140燃料化学学

47、报(中英文)第51卷comprised the following six categories:alcohols,hydrocarbons,acids,aldehydes,esters and ketones.Theseliquidproductsofpyrolysisat200350Cwerethen analyzed,as shown in Figure 7.Alcohols,hydrocarbons,andacidswerethemainliquidproductsof AVM pyrolysis,although the concentrations ofalcohol and ac

48、id gradually decreased with thetemperature.As the representative of alcohols andacids,2,3-dimethyl-3-hexanolandsorbicacidaccountedfor25.11%37.59%and11.23%17.95%oftotal liquid products,respectively.In contrast,theyields hydrocarbons and aldehydes gradually raisedwith the temperature,where 2,5-dimethy

49、l-2,3,4-hexatrieneandfurfuralaccountedfor13.03%14.80%and3.78%6.85%oftotalliquidproducts,respectively.Esters yield was unchanged,while that of ketonesdeclined,withtheincreaseoftemperature.150200250300350020406080Yield w/%Temperature/SoildLiquidGas100Figure6Yieldofavermectinpyrolysisproductsatdifferen

50、ttemperatures20025030035001020304050Alcohols HydrocarbonsAcidsAldehydesEstersKetoneYield w/%Temperature/Figure7Compositionofliquidpyrolysisproductsatdifferenttemperatures 2.3 DFT calculationsThephotocatalyticdegradationofAVMhasbeenreported in many literatures,giving a variety ofmechanisms and pathwa

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服