收藏 分销(赏)

显示动力学分析和隐式动力学分析.doc

上传人:xrp****65 文档编号:7038267 上传时间:2024-12-25 格式:DOC 页数:3 大小:34KB
下载 相关 举报
显示动力学分析和隐式动力学分析.doc_第1页
第1页 / 共3页
显示动力学分析和隐式动力学分析.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
广州有道资料网 三维绘图/机械设计/有限元分析:Solidworks、Ansys、Pro/E、CAD、Abaqus、Moldflow 显示动力学分析和隐式动力学分析 1、显式算法基于动力学方程,因此无需迭代;而静态隐式算法基于虚功原理,一般需要迭代计算。 2、显式算法最大优点是有较好的稳定性。 动态显式算法采用动力学方程的一些差分格式,不用直接求解切线刚度,不需要进行平衡迭代,计算速度快,时间步长只要取的足够小,一般不存在收敛性问题。因此需要的内存也比隐式算法要少。并且数值计算过程可以很容易地进行并行计算,程序编制也相对简单。但显式算法要求质量矩阵为对角矩阵,而且只有在单元级计算尽可能少时速度优势才能发挥, 因而往往采用减缩积分方法,容易激发沙漏模式,影响应力和应变的计算精度。 静态显式法基于率形式的平衡方程组与Euler向前差分法,不需要迭代求解。由于平衡方程式仅在率形式上得到满足,所以得出的结果会慢慢偏离正确值。为了减少相关误差,必须每步使用很小的增量。 3、隐式算法 隐式算法中,在每一增量步内都需要对静态平衡方程进行迭代求解,并且每次迭代都需要求解大型的线性方程组,这个过程需要占用相当数量的计算资源、磁盘空间和内存。该算法中的增量步可以比较大,至少可以比显式算法大得多,但是实际运算中上要受到迭代次数及非线性程度的限制,需要取一个合理值。 4、求解时间 使用显式方法,计算成本消耗与单元数量成正比,并且大致与最小单元的尺寸成反比; 应用隐式方法,经验表明对于许多问题的计算成本大致与自由度数目的平方成正比; 因此如果网格是相对均匀的,随着模型尺寸的增长,显式方法表明比隐式方法更加节省计算成本 隐式求解法 将冲压成型过程的计算作为动态问题来处理后,就涉及到时间域的数值积分方法问题。在80年代中期以前,人们基本上使用牛曼法进行时间域的积分。根据牛曼法,位移、速度和加速度有着如下的关系:上面式子中 , 分别为当前时刻和前一时刻的位移, 和 为当前时刻和前一时刻的速度, 和 为当前时刻和前一时刻的加速度,β和γ为两个待定参数。由上式可知,在牛曼法中任一时刻的位移、速度和加速度都相互关联,这就使得运动方程的求解变成一系列相互关联的非线性方程的求解。这个求解过程必须通过迭代和求解联立方程组才能实现。这就是通常所说的隐式求解法。隐式求解法可能遇到两个问题。一是迭代过程不一定收敛;二是联立方程组可能出现病态而无确定的解。隐式求解法的最大优点是它具有无条件稳定性,即时间步长可以任意大。 显式求解法 如果采用中心差分法来进行动态问题的时域积分,则有如下位移、速度和加速度关系: 由上式可以看出,当前时刻的位移只与前一时刻的加速度和位移有关,这就意味着当前时刻的位移求解无需迭代过程。另外,只要将运动方程中的质量矩阵和阻尼矩阵对角化,前一时刻的加速度求解无需解联立方程组,从而使问题大大简化,这就是所谓的显式求解法。显式求解法的优点是它即没有收敛性问题,也不需求解联立方程组,其缺点是时间步长受到数值积分稳定性的限制,不能超过系统的临界时间步长。由于冲压成型过程具有很强的非线性,从解的精度考虑,时间步长也不能太大,这就在很大程度上弥补了显式求解法的缺陷。 在80年代中期以前显式算法主要用于高速碰撞的仿真计算,效果很好。自80年代后期被越来越广泛地用于冲压成型过程的仿真,目前在这方面的应用效果已超过隐式算法。显式算法在冲压成型过程的仿真中获得成功应用的关键,在于它不像隐式算法那样有解的收敛性问题。 显式算法和隐式算法,有时也称为显式解法和隐式解法,是计算力学中常见的两个概念,但是它们并没有普遍认可的定义,下面收集的一些理解。先看看一般对两种方法的理解和比较。 显式算法 隐式算法 (01)适用问题 动力学(动态) 静力学(静态) (02)阻尼 人工阻尼 数值阻尼 (03)每步求解方法 矩阵乘法 线性方程组 (04)大矩阵(总刚) 否 是 (05)数据存贮量 小 大 (06)每步计算速度 快 慢 (07)迭代收敛性 无 有 (08)确定解 有确定解 可能是病态无确定解 (09)时步稳定性 有条件 无条件 (10)时间步 小 大 (11)计算精度 低 高 (01)是明显不对的,只是对两种方法的初级理解,(02)也是同样。下面要详细讨论这两点。(03)是每一步求解的方法,(04)(05)(06)(07)(08)是由(03)所决定的,它们不是两种方法的基本特点。同样,(09)是时间步选择的方法,(10)(11)是由(09)所决定的。 通过(03)(09)可以得到两种方法的计算特点,显式算法是每一步求解为矩阵乘法,时间步选择为条件稳定;隐式算法是每一步求解为线性方程组求解,时间步选择为无条件稳定。 下面主要分析两种方法的应用范围。 在求解动力学问题时,将方程在空间上采用有限元法(或其他方法)进行离散后,变为常微分方程组[M]{..u}+[C]{.u}+[K]{u}={f}。求解这种方程的其中两种方法为,中心差分法和Newmark法。采用中心差分法解决动力学问题被称为显式算法,采用Newmark法解决动力学问题被称为隐式算法。 在求解动力学问题时,离散元法(也有其他方法)主要有两种思想:动态松弛法(向后时步迭代),静态松弛法(每一步要平衡)。动态松弛法是显式算法,静态松弛法是隐式算法。其中冲压成型就是动态松弛法的主要例子。 在求解静力学问题时,有时候将其看作动力学问题来处理而采用动态松弛法,这是显式算法。其中冲压成形就是主要例子。 显式算法 隐式算法 (01)每步求解方法 矩阵乘法 线性方程组 (02)时步稳定性 有条件 无条件 (03)适用问题 动力中心差分法 动力Newmark法 动力动态松弛法 动力静态松弛法 静力动态松弛法 附加说明: 1)求解线性静力学问题,虽然求解线性方程组,但是没有时步的关系,所以不应将其看作隐式算法。 2)求解非线性静力学问题,虽然求解过程需要迭代,或者是增量法,但是没有明显的时步问题,所以不应将其看作隐式算法。 3)静态松弛法,可以认为是将动力学问题看作静力学问题来解决,每一步达到静力平衡,需要数值阻尼。 4)动态松弛法,可以认为是将静力学问题或者动力学问题,分为时步动力学问题,采用向后时步迭代的思想计算。对于解决静力学问题时,需要人工阻尼。 结构静力分析,动力学分析,显式动力学,屈曲分析,接触非线性分析,疲劳寿命分析,模态频率分析,谐振响应分析,跌落碰撞分析,热结构耦合分析,管道流体分析,流固耦合分析,弹塑性材料CAE分析,材料非线性力学分析,岩土材料非线性分析,橡胶材料超弹性分析,压力容器分析,货架分析,应力应变分析,受力分析,机械设计分析,汽车结构分析,电子电器分析,工程机械分析,瞬态分析,谱分析,汽车有限元分析,船舶结构有限元分析 广州有道资料网
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 百科休闲 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服