收藏 分销(赏)

决策分析2.doc

上传人:xrp****65 文档编号:7020261 上传时间:2024-12-25 格式:DOC 页数:87 大小:910KB
下载 相关 举报
决策分析2.doc_第1页
第1页 / 共87页
决策分析2.doc_第2页
第2页 / 共87页
决策分析2.doc_第3页
第3页 / 共87页
决策分析2.doc_第4页
第4页 / 共87页
决策分析2.doc_第5页
第5页 / 共87页
点击查看更多>>
资源描述

1、决策分析决策,就是针对某一问题,确定反映决策者偏好的目标,根据实际情况,通过科学方法从多个方案中选出一个最优(或满意)的方案的过程。决策分析技术首先在60年代初用于石油和天然气等重要工业部门的决策问题,随后被引入美国的火星无人探险和将核动力引入墨西哥国家动力系统的可行性研究等项目中。当前,决策技术在经济管理、城市发展、航天技术等众多领域都得以了广泛的应用。决策分析一般有四个步骤:(1)形成决策问题,包括提出方案和确定目标;(2)判断自然状态及其概率;(3)拟定多个可行方案;(4)评价方案并做出选择。常用的决策分析技术有:确定型情况下的决策分析,风险型情况下的决策分析,不确定型情况下的决策分析。

2、(1)确定型情况下的决策分析。确定型决策问题的主要特征有4方面:一是只有一个状态,二是有决策者希望达到的一个明确的目标,三是存在着可供决策者选择的两个或两个以上的方案,四是不同方案在该状态下的收益值是清楚的。确定型决策分析技术包括用微分法求极大值和用数学规划等。(2)风险型情况下的决策分析。这类决策问题与确定型决策只在第一点特征上有所区别:风险型情况下,未来可能状态不只一种,究竟出现哪种状态,不能事先肯定,只知道各种状态出现的可能性大小(如概率、频率、比例或权等)。常用的风险型决策分析技术有期望值法和决策树法。期望值法是根据各可行方案在各自然状态下收益值的概率平均值有大小,决定各方案的取舍。决

3、策树法有利于决策人员使决策问题形象化,可把各种可以更换的方案、可能出现的状态、可能性大小及产生的后果等,简单地绘制在一张图上,以便计算、研究与分析,同时还可以随时补充和修正。(3)不确定型情况下的决策分析。如果不只有一个状态,各状态出现的可能性的大小又不确知,便称为不确定型决策。常用的决策分析方法有:a.乐观准则。比较乐观的决策者愿意争取一切机会获得最好结果。决策步骤是从每个方案中选一个最大收益值,再从这些最大收益值中选一个最大值,该最大值对应的方案便是入选方案。b.悲观准则。比较悲观的决策者总是小心谨慎,从最坏结果着想。决策步骤是先从各方案中选一个最小收益值,再从这些最小收曾值中选出一个最大

4、收益值,其对应方案便是最优方案。这是在各种最不利的情况下又从中找出一个最有利的方案。c.等可能性准则。决策者对于状态信息毫无所知,所以对它们一视同仁即认为它们出现的可能性大小相等。于是这样就可按风险型情况下的方法进行决策。模 糊 技 术当今,新科技革命的“宠儿”电子计算机,已进入社会各个领域,走进千家万户,宣告人类进入电脑时代。电脑与人脑相比,确有过人之处,无论在运算速度、精确度,还是存储信息的“记忆力”方面,都是人脑望尘莫及的。然而,巧夺天工的电脑,毕竟不如人脑,它没有创造性,只有依据人编的程序才能工作。人脑的得天独厚之处,还在于它既能处理量化的精确信息,又能处理界限不清的模糊信息,进行活性

5、的模糊思维。例如,当我们判断远处的的是谁时,只要把此人的体形、动作等,与储存在大脑里的样本进行比较,。就不难得出正确的结论。但如果这种事让电脑来做,就得测出这人的身高、体重、动作的速度、频率等一系列精确的数据,非但不胜其繁,还往往适得其反。只要输入的数据有细微的变化,就会张冠李戴弄出天大笑话来。人脑的这种模糊性思维,是人类自然思维的特质,连吃奶的婴儿,也能根据经验去识别自己的母亲,而不致因她的服饰、发型的变化产生失误。电脑只能处理依据的传统数学方法,而不能处理非量化的模糊信息,是因为电脑依据的传统数学方法,无法描述事物的模糊概念。人脑的模糊思维为电脑的发展提供了活的样板。为了探索人工智能,使电

6、脑模仿人脑,进行更多的智力劳动,模糊数学便应运而生。1965年美国计算机专家查德创立的模糊集合论,在电脑与人脑之间架起了一座桥梁。模糊数学是描述模糊现象和处理模糊信息的数学方法。它把模糊信息原来“是”或“非”的不确定性,转换为“一定程度”的“是”或“非”的确定性,例如:“高与矮”、“厚与薄”、“冷与热”、“年轻与不年轻”,这些非量化的模糊信息,在模糊数学中用一个叫隶属度的基本要领来表述。对不同高矮、厚薄、冷热及年轻的“程度”,给出不同的隶属值,这样便可用定量的数学方法来表述和处理模糊信息。模糊技术是以模糊数学为理论基础的一门新兴技术。目前它已广泛应用于工农业生产、工程技术、信息、医疗、气象等领

7、域。90年代初,日本首先将模糊技术用于家电产品,如模糊洗衣机、模糊空调器、模糊微波炉、模糊冰箱等。现在我国也有自己的模糊家电产品,如无锡生产的小天鹅洗衣机、广东的快思逻辑电饭煲等。下面我们以模糊洗衣机为例,通过分析它的模糊控制过程(参见图1-2),来了解模糊技术的一般原理。模糊洗衣机由洗衣机、传感器、电脑三个基本部分组成。传感器的作用相当于人的感觉器官,用来采集洗涤物的有关信息,如洗涤物的多少、质地等,并将这些信息转换成电信号输入电脑。这里的电脑实际上是设计人员特制的一块小数点芯片(微处理器),里面存有根据人洗涤衣物的经验编辑成的一套控制规则。比如厚薄不同、脏的程度不同的衣物,应采用何种洗涤方

8、式,用多少水和洗衣粉,以及洗涤时间等。当电脑接收到传感器传来洗涤物的有关模糊信息后,形成模糊量指令,再运用模糊控制规则作出模糊决策,并向洗衣机发出执行控制信息,最后完成整个智能化洗衣操作过程。当前,模糊技术还处在发展阶段,有待进一步完善。但可以相信,它是一项跨世纪的高新技术,有着诱人的发展前景和广阔的应用天地。科学决策程序决策是人们对行动方案做出决定的过程。决策是管理工作的要素,是管理过程的基础活动。计划、组织、用人、领导和控制是管理的基本职能,而每项职能都要对诸如选择某个计划、采取某种组织方式、决定人员的使用、控制手段的选择等等作出决策。可以毫不夸张地说管理实际上就是决策。 决策是一个提出问

9、题、分析问题、解决问题的完整的动态过程。必须遵循科学的决策程序,才能做出正确的决策。决策程序一般包括四个基本步骤: (1)提出问题,确定目标。一切决策都是从问题开始。所谓问题,就是应有现象和实际现象之间出现的差距。决策者要善于在全面收集、调查、了解情况的基础上发现差距,确认问题,并能阐明问题的发展趋势和解决问题的重要意义。所谓目标,是指在一定的环境和条件下,在预测的基础上所希望达到的结果。目标是决策的出发点和归宿,目标必须明确、合理,要在需要与可能的基础上,分清必须达到的目标和期望达到的目标。应当在优先保证实现必达目标的基础上,争取实现期望目标。目标应尽量具体、争取量化,以便与执行情况 进行分

10、析对比。 (2)拟定可行方案。可行方案是指具备实施条件、能保证决策目标实现的方案。解决任何一个问题,都存在多种途径,其中哪条途径有效,要经过比较,所以要制定各种可供选择的方案。拟定可行方案的过程是一个发现、探索的过程,也是陶太、补充、修订、选取的过程。应当有大胆设想、勇于创新的精神,又要细致冷静、反复计算、精心设计。对于复杂的问题,可邀请有关专家共同商定。在拟定方案时,可运用献策会(BS会)、对演法等智囊技术。对演法就是让相互对立的小组制定不同的方案,然后双方展开辩论,互攻其短,以求充分暴露矛盾,使方案越来越完善。(3)对方案进行评价和优选。对每一方案的可行性要进行充分的论证,并在论证的基础上

11、作出综合评价。论证要突出技术上的先进性、实现的可能性以及经济上的合理性。不仅要考虑方案所带来的经济效益,也要考虑可能带来的不良影响和潜在的问题,从多方案中选取一个较优的方案。(4)方案的实施与反馈。决策的正确与否要以实施的结果来判断,在方案实施过程中应建立信息反馈渠道,将每一局部过程的实施结果与预期目标进行比较,若发现差异,则应迅速纠正,以保证决策目标的实现。正确的决策取决于多种因素,除了要有完善的决策体系,遵守科学的决策程序外,决策者的经验、才能和素质,运用适宜的决策方法等都是至关重要的因素。 模糊综合评判对一个事物的评价,常常要涉及多个因素或者多个指标。比如,要判定某项产品设计是否有价值,

12、每个人都可从不同角度考虑:有人看是否易于投产,有人看是否有市场潜力,有人看是否有技术创新,这时就要根据这多个因素对事物作综合评价。具体过程是:将评价目标看成是由多种因素组成的模糊集合(称为因素集u),再设定这些因素所能选取的评审等级,组成评语的模糊集合(称为评判集v),分别求出各单一因素对各个评审等级的归属程度(称为模糊矩阵),然后根据各个因素在评价目标中的权重分配,通过计算(称为模糊矩阵合成),求出评价的定量解值。上述过程即为模糊综合评判。例如,对某商店出售的某种服装进行评价,主要考虑三个因素:花色式样、耐穿程度及价格。可构成因素集u=花色式样(u1),耐穿程度(u2),价格(u3),评判集

13、为v=很欢迎(v1),比较欢迎(v2),不太欢迎(v3),不欢迎(v4),就各因素,可找较多顾客对该因素给定评语,设顾客们对花色式样的评语为20%很欢迎,70%比较欢迎,10%不太欢迎,则对u1的评价为(0.2,0.7,0.1,0),相应可得对u2的评价设为(0,0.4,0.5,0.1),对u3的评价设为(0.2,0.3,0.4,0.1),于是得出单因素评价的模糊矩阵R:服装的三个因素在评价中的地位不是均等的,需给予不同权数。设顾客对花色式样赋予权数为0.2,对耐穿程度赋予权数0.5,对价格程度赋予权数为0.3,这三个权数便组成u上的一个模糊向量A=(0.2,0.5,0.3),通过A和R的合成

14、可得顾客对这种服装的综合评价值:因为0.2+0.4+0.5+0.1=1.2,尚需进一步归一化。用1.2除各数使之归一得到(0.17,0.34,0.40,0.09),便是归一化后的综合评价结果。可以利用这一定量数据,从事不同评价对象之间的对比分析,或者在决策模型中使用。此外,在遇到因素很多时,可将集合u=u1,u2,un,按某些属性分成几类,使每一类中的因素个数相对减少。可先就每一类中的因素进行综合评判,然后再就评价结果进行类之间的高层次综合评判。多目标决策方法多目标决策方法是从20世纪70年代中期发展起来的一种决策分析方法。决策分析是在系统规划、设计和制造等阶段为解决当前或未来可能发生的问题,

15、在若干可选的方案中选择和决定最佳方案的一种分析过程。在社会经济系统的研究控制过程中我们所面临的系统决策问题常常是多目标的,例如我们在研究生产过程的组织决策时,既要考虑生产系统的产量最大,又要使产品质量高,生产成本低等。这些目标之间相互作用和矛盾,使决策过程相当复杂使决策者常常很难轻易作出决策。这类具有多个目标的决策总是就是多目标决策。多目标决策方法现已广泛地应用于工艺过程、工艺设计、配方配比、水资源利用、环境、人口、教育、能源、企业高速武器系统设计和评价、经济管理等领域。多目标决策主要有以下几种方法:(1)化多为少法:将多目标问题化成只有一个或二个目标的问题,然后用简单的决策方法求解,最常用的

16、是线性加权和法。(2)分层序列法:将所有目标按其重要性程度依次排序,先求出第一个最重要的目标的最优解,然后在保证前一目标最优解的前提下依次求下一目标的最优解,一直求到最后一个目标为止。(3)直接求非劣解法:先求出一组非劣解,然后按事先确定好的评价标准从中找出一个满意的解。(4)目标规划法:对于每一个目标都事先给定一个期望值,然后在满足系统一定约束条件下,找出与目标期望值最近的解。(5)多属性效用法:各个目标均用表示效用程度大小的效用函数表示,通过效用函数构成多目标的综合效用函数,以此来评价各个可行方案的优劣。(6)层次分析法:把目标体系结构予以展开,求得目标与决策方案的计量关系。(7)重排序法

17、:把原来的不好比较的非劣解通过其他办法使其排出优劣次序来。(8)多目标群决策和多目标模糊决策等。运筹学方法运筹在中文意义上即运算筹划、以策略取胜的意义。运筹学是指用数学方法研究经济、社会和国防等部门在内外环境的约束条件下合理调配人力、物力、财力等资源,使实际系统有效运行的技术科学。它可以用来预测系统发展趋势、制订行动规划或优选可行方案。第二次世界大战中,盟军科学家在研究如何有效地使防空作战系统运行,合理配置雷达站,使整个空军作战系统协调配合来有效地防御德军收音机入侵的过程中发展出了运筹学。二战以后,研究军事运筹学的科学家纷纷转向民用部门,迅速促进了运筹学在社会经济领域的应用。运筹学作为一个系统

18、科学中的学科体系,研究的内容十分广泛,主要分支有:线性规划、非线性规划、整数规划、几何规划、大型规划、动态规划、图论、网络理论、博弈论、决策论、排队论、存储论、搜索论等。应用运筹学处理问题一般分为五个阶段:(1)规定目标和明确问题:包括把整个问题分解成若干子问题,确定问题的尺度、有效性度量、可控变量和不可控变量。(2)收集数据和建立模型:包括定量关系、经验关系和规范关系。(3)求解模型和优化方案:包括确定求解模型的数学方法,程序设计、调试运行和方案选优。(4)检验模型和评价:包括检验模型在主要参数变动时的结果是否合理,输入发生微小变化时输出变化的相对大小是否合适以及模型是否容易解出等方面的检验

19、和评价。(5)方案实施和不断优化:包括应用所得的结果解决实际问题,并在方案实践过程中发现新的问题不断优化。上述五个阶段在实际过程中往往交叉重复进行,不断反复。一、学习本章的意义 管理就是决策,要成为有成效的管理者,不但必须在复杂的情况下,及时地作出正确的决策,而且能让其他人明白为什么你的建议是良好的决策,因此成功的企业,其管理者的决策,必须建立在正确、及时的决策分析的基础上。二、学习本章的目的 学习完本章后,你应当能够: 1明确建立在正确、及时的决策分析的基础上的决策对企业管理者的重要性 2理解决策分析的概念和决策问题的特征 3掌握决策分析模型决策树的概念和绘制决策树的基本方法 4学会决策分析

20、的“逆推”分析法 5理解层次分析法的概念 6掌握多目标决策层次分析方法 一、什么是决策分析 决策分析是在合理地分析含有不确定性的决策问题时用的一套概念和系统程序,目的为了改善决策的过程。 决策的通常程序是在许多备选方案中间,按方案的评价标准,抉择出一个。一般而言,决策分析所致力的决策问题有以下特征: 1备选方案的多目标性 对多数的复杂的决策问题,有许多目标均为决 策者所关心,而且要抉择的方案所内含的目标,几 乎总是相互矛盾的,所以决策者不可避免的要考虑 矛盾目标之间的权衡。 2备选方案的不确定性 每个备选方案可能有多个随机事件,因此方案 的结果具有不确定性。 3备选方案的时序性 各个备选方案的

21、结果不是发生在同一时刻,某 些备选方案之间存在时序关系,即一个方案的某个 结果发生后,才会出现另一个方案的结果。 4方案评价标准是主观概率和效用函数交织在一起的概念 由于备选方案存在不确定性,又不可能除去这 种不确定性,因此需要运用概率对其进行某种处理。 在工商领域,概率很难采用合理的方法测量出来, 一般是由人们在对某些事物的不确定性具有深刻理 解的基础上标定出来。例如,股票经纪人可能告诉 你“今天股市上扬的概率是70%,此种概率称为 主观概率(Subjective Probabilities),也就是说: 主观概率是指由有经验的个人或小组给出的某 种事件发生的可能性。 用主观概率标定,需要对

22、不确定事件非常熟悉, 并且对与事件有关的数据也非常熟悉。我们熟悉的 例子是天气预报,它包括降雨的概率,这种主观概 率是由经验丰富的天气预报员在大量数据分析的基 础上给出的。当然,有条件的话,主观概率也可以 通过抽样统计来确定。 决策的评价标准经常是费用(例如:政府一般 同最低的投标人签定合同,最低投标人就是要价最 低的履行合同者)。但在决策分析致力的决策问题 中,多重评价标准是很普遍的(例如A投标人费用低, 但是工期长;B投标人费用高,但是工期短,该雇 用哪一个?)。而且还会有许多难以量化确定的因 素,诸如不同决策者的个人偏好、威信、高兴、痛 苦、以及政治影响等需要在方案抉择中加以考虑的 因素

23、,因此,在决策分析中引入了效用函数的概念, 常用u(x)来表示,简单的效用函数,可以用方案的 经济价值,如利润,可直接量化计得,复杂的效用 函数,则需用其他的定性分析与定量分析相结合的 综合分析法专门确定。 5群体决策 群体决策就是有一群人集体做出决策。这不仅 是因为,选择一个方案的任务往往落在一组人,而 不是一个人身上,而且也是因为,对复杂的主观概 率,或者效用函数,常常需要一组人,例如专家小 组来确定。 二、决策分析模型决策树 (一)决策树的概念 决策树(Decision Tree)就是一个为使复杂的决策问题能够显得容易理解各种选择,并更容易作出决策,而建立的一个决策问题模型。 决策树是决

24、策问题的表示,而不是作出决策。我们通过一个例子,来认识决策树的这种功能,以及有关的概念。 例 1.1.1 丁立从事汽车销售业务,他在一家汽车经销公司找到了一项业务,帮公司推销二手车。在这项交易中,丁立可以从这家公司一次领取一辆车,并设法卖掉,若卖掉,他可以进另一辆。现在有三辆车等待出售(表1.1.1)。 汽车经销公司的要求是:丁立若接受这项交易,必须先卖掉廉价型汽车,然后就可以从其他两种车中任选一种再卖,或结束交易。若卖掉了第二辆车,只要丁立愿意干,就可以卖第三辆车。 丁立若同意这项推销业务,丁立将承担推销成本,但又有可能推销不出去,他该怎么办?表1.1.1 丁立的汽车销售分析 汽车类型委托价

25、/元销售成本估计销售成功概率I.廉价型90000600003/4II.标准型150000200002/3III.豪华型300000600001 这个决策问题的决策树如图1.1.1所示: 决策树是由简单的图形符号,说明文字,以及主观概率和效用 函数组成的: 1、图1.1.1中的小方框表示一项抉择。称为决策节点。 从决策节点引出的折线,称为方案线,其上方是方案名称、代 号或简略说明;其下方,一般用数字表示方案的成本。 2、图1.1.1中的小方框圆圈表示一个不确定事件,称为方案节 点。 从方案节点引出的折线,称为事件线,其上方是随机事件名称 或简述,随后在括号内表示这个随机事件出现的概率。一个方案有

26、 多少随机事件,就需引出多少根事件线 3、 在画决策树时,横轴表示时间。例如,如下图所示,决策 B是在决策A之后作出的。 4、一个方案线或事件线,若其后不再连接决策节点或方案节点, 称为最终方案线,或事件线。在决策树的最右端,在每根方案线或事 件线之后,用u(i)表示此方案线(或事件线)对应的备选方案(或随机 结果)的效用函数值(参看图1.1.1)。u(i)的序号i的由小到大的排序, 是按对应的方案线,或事件线,在决策树上从上到下的顺序确定。这 样就与对应的备选方案,或随机结果,在决策树上反映的由后到前时 序保持一致。这是在下一节陈述的决策树的“逆推”计算法所需要的。 图1.1.1中u(i)表

27、示的是销售收益,即:委托价销售成本,可根据 表1.1.1的数据求得,例如: u(1)=(90000+150000+300000)(60000+20000+60000)= 400000 图1.1.1中其余的 ,可类似求得。 (二)决策树方法的目的 由于决策分析所致力的是复杂的决策问题,具有决策分析问题的5个特征,对这样的决策问题,要作出明智决策的第一步,就是要努力理解所决策的问题。用组成决策树的基本图形符号可以把非常复杂的决策问题清楚地表示在图上,此处理可明显提高对决策问题的理解,并且对于提高管理决策水平常常是一种很有用、也是值得一用的方法。 一某公司帐户上有一笔闲置资金,公司在48小时内不用这

28、笔资金,因此,可以进行投资。一种方案是存于银行两天,48小时可赚取利息3 835.62元。另一种方案是由经纪人投资于债券市场,经纪人的费用为100元,据经纪人讲,本次操作的成功率为90%,若成功可获得利息4 383.56元;若失败,资金将闲置24小时。但是第二天有同样的选择机会,就是说,可以存于银行24小时赚取利息为1 917.81元,或者付经纪人另外的100元酬金,投资于债券市场24小时,操作的成功率仍为90%,若成功可获得利息为2 191.78元。 该公司应该如何决策? 求解 步骤一 1画出决策树如下: 其中: u(2)=4383.56-100=4283.56 u(3)=1917.81-1

29、00=1817.81 u(4)=2191.78-100=2091.78 u(4)=-100-100=-200 步骤二 2进行逆推分析法: 其中: u(b)=0.92091.78 + 0.1(-200)=1682.7 u(B)=1817.811682.7 u(a)= 0.94283.56 + 0.11817.81=4036.98 u(A)=4036.983835.62 步骤三 2作出决策: 按最大化准则作出的决策是投资于债卷市场, 若失败,第二天再存入银行一天。 因为u(A)=4036.98,即表示第一天投资债卷市 场,并且失败后在第二天再存入银行的方案。 二一个车形选择决策的AHP模型如下图所

30、示: (1)求下列判断矩阵解: 答案 (2)从下列判断矩阵求总权重: 答案 其中: 方案A的总权重: 0.2700=0.2221*0.5396+0.4112*0.1816+0.1164*0.2472+0.2503*0.1868 方案B的总权重: 0.4385=0.2221*0.2970+0.4112-0.7271+0.1164-0.0743+0.2503-0.2596 方案C的总权重: 0.2915=0.2221-0.1643+0.4112-0.0913+0.1164-0.6793+0.2503-0.5536一、方案的期望值(一) 方案期望值的定义 在决策分析中,若备选方案具有不确定性,则其效

31、用函数一般取值为方案的期望值,即: u(a)=E(A) E(A)=iPiu(ai) 其中: u (a) :方案A的效用函数 E (A) :方案A的期望值 i:在方案A的互斥而且完备的事件集合上求和 Pi:第i种事件的概率 u (ai):第i种事件的效用函数值 如下图1.1.3的方案A: 若方案A的效用函数取值为期望值,则: u(a)=E(A) =0.1*100000+0.3*1000+0.6*0 =10300 由于在决策树上,一般用大写字母表示决策节点,而用小写字母表示方案节点,所以可用 表示方案A的效用函数值。(二) 期望值最大化准则 在分析决策时,不确定性方案的期望非常重要,因为它表示了方

32、案的“平均值”。 要求最大效用的方案评价准则,也称为期望值最大化准则。在决策分析中,采用期望值最大化评价准则,就平均而言结果会是最好的。 然而当要求期望值最大时,必须对方案的风险控制有严格的管理,并且要仔细权衡决策可能给企业带来的灾难性后果。例如,航空公司经营旅客保险,若飞机坠毁了,他们将赔付,基于此种考虑,他们放弃了期望值这一指标(保险公司则一般受益于该指标),但是避免了若发生意外事故给公司造成的灾难性打击。决策者在方案抉择时将涉及期望值与风险的权衡,图1.1.4中描述的决策问题,对很多个人决策者来说,是不容易抉择的。 不确定方案A的期望是0.91 0000+0.1(1 0000),即u(A

33、)=8000元,而确定性方案B的u(B)=6000元,从要求最大效用的方案评价准则来说,方案A比方案B好, 但A有更大的风险,因为我们可能损失10000元(但也可能以90%的概率挣10000元)。最终的决策决定于决策者是放弃2000元的期望利益而避免1 0000元的损失,还是接受风险取得额外的4000元。本处没有确切答案,不同的决策者将作出不同的决策。二、决策分析的“逆推”分析法 在基于决策树对决策问题进行决策分析时,必须及时地考察后序决策,从右到左遍历决策树,本过程称为逆淮(Roll Back)。 下面基于图1.1.1的决策树,对例1.1.1的决策问题采用逆推法作决策分析。 (1) 逆推分析

34、第一步:图1.1.1中,最右边的节点是决策节点C,即按决策时序而言是最后的节点。这项抉择的各有关的备选方案的效用函数是明确的,因此,在逆推决策树时,首先应计算决策节点C。因为 u(销售)=u(1)=400000160000=u(2)=u(结束销售)所以按期望值最大化准则,选择方案:销售,即u(C)= u(1)。 如图1.1.5所示: (2) 逆推分析第二步:图1.1.1中,右边第二个节点是方案节点b,由于对应的方案具有不确定性,因此要用方案的期望值作为效用函数: u(b)=2/3u(C)+1/3u(3)=300000 如图1.1.6所示: (3) 逆推分析第三步:图1.1.1中,从右到左第三个

35、节点是决策节点B,所以决策分析按期望值最大化准则,选择方案:销售,即u(B)= u(b)。 如图1.1.7所示: (4) 逆推分析第四步:图1.1.1中,从右到左第四个节点是方案节点a,对应的方案具有不确定性,因此要用方案的期望值作为效用函数: u(a)=3/4u(B)+1/4u(6)=210000 如图1.1.8所示: (5) 逆推分析第五步:图1.1.1中,最左的节点是决策节点A,所以决策分析按期望值最大化准则,选择方案:交易,销售,即u(A)= u(a)。 如图1.1.9所示:(A点上方虚方框)三、临界分析 有不少决策问题,决策完全依赖于主观概率的值,在这些问题中,引入临界分析对解决问题

36、是有帮助的。 临界分析是寻找临界概率值,即改变决策的概率值。 例如,有一项决策问题:由于供应商犯了一个错误,致使企业必须承担额外费用1000000元,是否应起诉以讨回这笔费用呢?诉讼费是50000元,本决策之关键在于确定赢得诉讼的概率。 用决策树表示如图1.1.10: 引人变量p表示胜诉的概率,那么(l一p)表示败诉的概率,逆推决策树,“起诉”方案的期望值为: 期望值=950000p+(-50000)(1-p)=1 000000p-50000“不起诉”方案的期望值为0,基于期望值最大化准则,如果 1000000p-500000或: p50000/1000000或: p0.05则起诉。 因此,依

37、期望值最大准则决策,关键在于主观概率的值p。并不需要知道p的精确值,仅需知其范围,若p0.05则起诉,若p0.05则不起诉。一、层次分析法概述 层次分析法(AHP)是一种以一个递阶层次结构模型求得每一个具体目标的权重,进而解决多目标决策的非数学模型优化方法。 我们通过一个例子先来概要地了解AHP的实质、过程和特征: 例1.3.1 某地区为了达到提高供电能力的目标,要在水电、核电和火电三种方案中作出抉择决策。为此应用层次分析法来解决这个决策问题。 决策的实质就是要在提高供电能力这个总目标上对水电、核电和火电三种方案作出量化比较的评价。而提高供电能力这个总目标,实际上是由很多因素的结果,也就是多个

38、目标的结果,因此直接从总体目标上对各个方案作出合理的量化评价是难以进行的。针对这个难点, AHP的思路是找出总目标的主要决定因素,将总目标分解为若干子目标,这样,在总目表的层面上是先对各个子目标作出量化比较评价,然后再在每个子目标的层面上对各个方案作出量化比较的评价,最后对两层评价作出集成,从而得到了在总目标上对各个方案的评价。 本例中,通过分析,提高供电能力这个总目标,可分解为功率大投资少见效快三个子目标(或三个准则,或三个决定因素),形成了一个三个层次的递阶层次结构模型,如图1.3.1所示: 图1.3.1中各方框间的连线关于上一层目标的下一层各个因素的量化比较评价。 AHP的基本步骤可分为

39、建构AHP模型和求解AHP模型两个阶段。 建构AHP模型是AHP的核心与难点,而求解AHP模型中的量化比较的正确性是决策正确的基础与前提。 二、建构层次分析法的模型 构建AHP模型,通常需要咨询组织各种专家,深入研究分析面临的问题,才能正确简洁地将问题的目标划分表达为不同的层次。如何构建递阶层次,实际上并无一定之规,关键是把握好以下两点: 1、当某个层次的目标还需细分(难以进行对下层因素的评价),应将该层进一步划分为若干个子层次。 2、构造递阶层次时既要考虑与事实相符,又要抓住主要因素,避免结构过于庞杂、冗长。三、层次分析法模型求解 建构AHP模型之后即可进入第二阶段:求解AHP模型。在下文中

40、,为解说的简便,把下层的子目标、各方案对上层而言,统称为“因素”,而把上层的子目标对下层而言,统称为“目标”。AHP模型的求解过程共有三步: 1、求下层各因素关于上层单个目标的层权重 层权重是指下层各因素关于上层单个目标的重要 性的量化评价值。 2、权重的合成 权重的合成,即求最下层的各因素(方案)关于最 上层的目标(总目标)的总权重。 3、找出最优方案或给各方案优劣化顺序 我们仍以例1.3.1的决策问题为例来了解具体解题过程。 例1.3.2 对图1.3.1构建的例1.3.1的决策问题的AHP模型求解。 (1)求层权重 图1.3.2是对图1.3.1构建的AHP模型完成了求解第一步后的结果。图中连线旁的数据,就是该线连接的下层因素关于该线连接的上层目标的权重。 求权重也有三个步骤: 1、用“两两比

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服