1、初三数学讲义应用题一课前练一练07年23、(12分)某博物馆的门票每张10元,一次购买30张到99张门票按8折优惠,一次购买100张以上(含100张)按7折优惠。甲班有56名学生,乙班有54名学生。(1)若两班学生一起前往参观博物馆,请问购买门票最少共需花费多少元?(2)当两班实际前往该博物馆参观的总人数多于30人且不足100人时,至少要多少人,才能使得按7折优惠购买100张门票比实际人数按8折优惠购买门票更便宜? 11年试题二教学内容1. 方程(组)、一元二次方程的应用;列方程(组)解应用题的一般步骤;2. 实际问题中对根的检验非常重要3. 不等式(组)的解法与应用,在问题中不等式的解要符合
2、实际情况【注意点】分式方程的检验,实际意义的检验例1. 张老师和李老师同时从学校出发,步行15千米去县城购买书籍,张老师比李老师每小时多走1千米,结果比李老师早到半小时,两位老师每小时各走多少千米?设李老师每小时走x千米,依题意得到的方程是( )例2. 2009年初我国南方发生雪灾,某地电线被雪压断,供电局的维修队要到30km远的郊区进行抢修维修工骑摩托车先走,15min后,抢修车装载所需材料出发,结果两车同时到达抢修点已知抢修车的速度是摩托车速度的1.5倍,求这两种车的速度一元二次方程例题3. 商店经销一种销售成本为每千克40元的水产品,椐市场分析,若按每千克50元销售,一个月能售出500千
3、克;销售单价每涨1元,月销售量就减少10千克针对这种水产品的销售情况,要使月销售利润达到8000元,销售单价应定为多少?(月销售利润月销售量销售单价月销售成本)函数类型例题4某旅游商品经销店欲购进A、B两种纪念品,若用380元购进A种纪念品7件,B种纪念品8件;也可以用380元购进A种纪念品10件,B种纪念品6件(1) 求A、B两种纪念品的进价分别为多少?(2)若该商店每销售1件A种纪念品可获利5元,每销售1件B种纪念品可获利7元,该商店准备用不超过900元购进A、B两种纪念品40件,且这两种纪念品全部售出后总获利不低于216元,问应该怎样进货,才能使总获利最大,最大为多少?真题训练09年23
4、. (本小题满分12分)为了拉动内需,广东启动“家电下乡”活动。某家电公司销售给农户的型冰箱和型冰箱在启动活动前一个月共售出960台,启动活动后的第一个月销售给农户的型和型冰箱的销量分别比启动活动前一个月增长30%、25%,这两种型号的冰箱共售出1228台。(1)在启动活动前的一个月,销售给农户的型冰箱和型冰箱分别为多少台?(2)若型冰箱每台价格是2298元,型冰箱每台价格是1999元,根据“家电下乡”的有关政策,政府按每台冰箱价格的13%给购买冰箱的农户补贴,问:启动活动后的第一个月销售给农户的1228台型冰箱和型冰箱,政府共补贴了多少元(结果保留2个有效数字)?08年.23某省为解决农村饮
5、用水问题,省财政部门共投资20亿元对各市的农村饮用水的“改水工程”予以一定比例的补助2008年,A市在省财政补助的基础上投入600万元用于“改水工程”,计划以后每年以相同的增长率投资,2010年该市计划投资“改水工程”1176万元(1)求A市投资“改水工程”的年平均增长率;(2)从2008年到2010年,A市三年共投资“改水工程”多少万元?【当堂检测】1. 已知某工厂计划经过两年的时间,把某种产品从现在的年产量100万台提高到121万台,那么每年平均增长的百分数约是_按此年平均增长率,预计第4年该工厂的年产量应为_万台2. 为了营造人与自然和谐共处的生态环境,某市近年加快实施城乡绿化一体化工程
6、,创建国家城市绿化一体化城市某校甲,乙两班师生前往郊区参加植树活动已知甲班每天比乙班少种10棵树,甲班种150棵树所用的天数比乙班种120棵树所用的天数多2天,求甲,乙两班每天各植树多少棵?3. 幼儿园有玩具若干份分给小朋友,如果每人分3件,那么还余59件如果每人分5件,那么最后一个人不少于3件但不足5件,试求这个幼儿园有多少件玩具,有多少个小朋友4. 甲、乙两班学生到集市上购买苹果,苹果的价格如下表所示甲班分两次共购买苹果70kg(第二次多于第一次),共付出189元,而乙班则一次购买苹果70kg (1)乙班比甲班少付出多少元? (2)甲班第一次,第二次分别购买苹果多少千克?购苹果数不超过30
7、kg30kg以下但不超过50kg50kg以上每千克价格3元2.5元2元5.杂技团进行杂技表演,演员从跷跷板右端处弹跳到人梯顶端椅子处,其身体(看成点)的路线是抛物线的一部分,如图(1)求演员弹跳离地面的最大高度;第10题图ABC(2)已知人梯高米,在一次表演中,人梯到起跳点的水平距离是4米,问这次表演是否成功?请说明理由6. 我市某镇组织20辆汽车装运完A、B、C三种脐橙共100吨到外地销售按计划,20辆汽车都要装运,每辆汽车只能装运同一种脐橙,且必须装满根据下表提供的信息,解答以下问题:脐 橙 品 种ABC每辆汽车运载量(吨)654每吨脐橙获得(百元)121610(1)设装运A种脐橙的车辆数
8、为,装运B种脐橙的车辆数为,求与之间的函数关系式;(2)如果装运每种脐橙的车辆数都不少于4辆,那么车辆的安排方案有几种?并写出每种安排方案;(3)若要使此次销售获利最大,应采用哪种安排方案?并求出最大利润的值7.某水果批发商销售每箱进价为40元的苹果,物价部门规定每箱售价不得高于55元,市场调查发现,若每箱以50元的价格销售,平均每天销售90箱,价格每提高1元,平均每天少销售3箱(1)求平均每天销售量(箱)与销售价(元/箱)之间的函数关系式 (2)求该批发商平均每天的销售利润(元)与销售价(元/箱)之间的函数关系式(3)当每箱苹果的销售价为多少元时,可以获得最大利润?最大利润是多少?8.某商店需要购进一批电视机和洗衣机,根据市场调查,决定电视机进货量不少于洗衣机的进货量的一半电视机与洗衣机的进价和售价如下表:类别电视机洗衣机进价(元/台)18001500售价(元/台)20001600计划购进电视机和洗衣机共100台,商店最多可筹集资金161 800元(1)请你帮助商店算一算有多少种进货方案?(不考虑除进价之外的其它费用)(2)哪种进货方案待商店销售购进的电视机与洗衣机完毕后获得利润最多?并求出最多利润(利润售价进价)