1、第二章 热力学第一定律2.5 始态为25 C,200 kPa的5 mol某理想气体,经途径a,b两不同途径到达相同的末态。途经a先经绝热膨胀到 -28.47 C,100 kPa,步骤的功;再恒容加热到压力200 kPa的末态,步骤的热。途径b为恒压加热过程。求途径b的及。 解:先确定系统的始、末态 对于途径b,其功为 根据热力学第一定律 2.6 4 mol的某理想气体,温度升高20 C,求的值。 解:根据焓的定义 2.10 2 mol某理想气体,。由始态100 kPa,50 dm3,先恒容加热使压力体积增大到150 dm3,再恒压冷却使体积缩小至25 dm3。求整个过程的 。 解:过程图示如下
2、 由于,则,对有理想气体和只是温度的函数 该途径只涉及恒容和恒压过程,因此计算功是方便的 根据热力学第一定律 2.13 已知20 C液态乙醇(C2H5OH,l)的体膨胀系数,等温压缩率,密度,摩尔定压热容。求20 C,液态乙醇的。 解:由热力学第二定律可以证明,定压摩尔热容和定容摩尔热容有以下关系 2.14 容积为27 m3的绝热容器中有一小加热器件,器壁上有一小孔与100 kPa的大气相通,以 维持容器内空气的压力恒定。今利用加热器件使器内的空气由0 C加热至20 C,问需供给容器内的空气多少热量。已知空气的。 假设空气为理想气体,加热过程中容器内空气的温度均匀。 解:在该问题中,容器内的空
3、气的压力恒定,但物质量随温度而改变 注:在上述问题中不能应用,虽然容器的体积恒定。这是因为,从 小孔中排出去的空气要对环境作功。所作功计算如下: 在温度T时,升高系统温度 dT,排出容器的空气的物质量为 所作功 这正等于用和所计算热量之差。2.15 容积为0.1 m3的恒容密闭容器中有一绝热隔板,其两侧分别为0 C,4 mol的Ar(g)及150 C,2 mol的Cu(s)。现将隔板撤掉, 整个系统达到热平衡,求末态温度t及过程的。已知:Ar(g)和Cu(s)的摩尔定压热容分别为及,且假设均不随温度而变。 解:图示如下 假设:绝热壁与铜块紧密接触,且铜块的体积随温度的变化可忽略不计 则该过程可
4、看作恒容过程,因此 假设气体可看作理想气体,则 2.16 水煤气发生炉出口的水煤气的温度是1100 C,其中CO(g)和H2(g)的摩尔分数均为0.5。若每小时有300 kg的水煤气由1100 C冷却到100 C,并用所收回的热来加热水,是水温由25 C升高到75 C。求每小时生产热水的质 量。CO(g)和H2(g)的摩尔定压热容与温度的函数关系查本书附录,水的比定压热容。 解:300 kg的水煤气中CO(g)和H2(g)的物质量分别为 300 kg的水煤气由1100 C冷却到100 C所放热量 设生产热水的质量为m,则 2.18 单原子理想气体A于双原子理想气体B的混合物共5 mol,摩尔分
5、数,始态温度,压力。今该混合气体绝热反抗恒外压膨胀到平衡态。求末态温度及过程的。 解:过程图示如下 分析:因为是绝热过程,过程热力学能的变化等于系统与环境间以功的形势所交换的能 量。因此, 单原子分子,双原子分子 由于对理想气体U和H均只是温度的函数,所以 2.19 在一带活塞的绝热容器中有一绝热隔板,隔板的两侧分别为2 mol,0 C的单原子理想气体A及5 mol,100 C的双原子理想气体B,两气体的压力均为100 kPa。活塞外的压 力维持在100 kPa不变。今将容器内的隔板撤去,使两种气体混合达到平衡态。求末态的温度T及过程的。 解:过程图示如下 假定将绝热隔板换为导热隔板,达热平衡
6、后,再移去隔板使其混合,则 由于外压恒定,求功是方便的 由于汽缸为绝热,因此 2.20 在一带活塞的绝热容器中有一固定的绝热隔板。隔板靠活塞一侧为2 mol,0 C的单原子理想气体A,压力与恒定的环境压力相 等;隔板的另一侧为6 mol,100 C的双原子理想气体B,其体积恒定。今将绝热隔板的绝热层去掉使之变成导热板,求系统达平衡时的T及过程的。 解:过程图示如下 显然,在过程中A为恒压,而B为恒容,因此 同上题,先求功 同样,由于汽缸绝热,根据热力学第一定律 2.23 5 mol双原子气体从始态300 K,200 kPa,先恒温可逆膨胀到压力为50 kPa,在绝热可逆压缩到末态压力200 k
7、Pa。求末态温度T及整个过程的及。 解:过程图示如下 要确定,只需对第二步应用绝热状态方程 ,对双原子气体 因此 由于理想气体的U和H只是温度的函数, 整个过程由于第二步为绝热,计算热是方便的。而第一步为恒温可逆 2.24 求证在理想气体p-V 图上任 一点处,绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。 证明:根据理想气体绝热方程, 得,因此 。因此绝热线在处的斜率为 恒温线在处的斜率为 。由于,因此绝热可逆线的斜率的绝对值大于恒温可逆线的绝对值。2.25 一水平放置的绝热恒容的圆筒中装有无摩擦的绝热理想活塞,活塞左、右两侧分别为50 dm3的单原子理想气体A和50 dm3的双原子理想气
8、体B。两气体均为0 C,100 kPa。A气体内部有一体积和热容均可忽略的电热丝。现在经过通电缓慢加热左侧气体A,使推动活塞压缩右侧气体B到最终压力增至200 kPa。求: (1)气体B的末态温度。 (2)气体B得到的功。 (3)气体A的末态温度。 (4)气体A从电热丝得到的热。 解:过程图示如下 由于加热缓慢,B可看作经历了一个绝热可逆过程,因此 功用热力学第一定律求解 气体A的末态温度可用理想气体状态方程直接求解, 将A与B的看作整体,W = 0,因此 2.25 在带活塞的绝热容器中有4.25 mol的某固态物质A及5 mol某单原子理想气体B,物质A的。始态温度,压力。今以气体B为系统,
9、求经可逆膨胀到时,系统的及过程的。 解:过程图示如下 将A和B共同看作系统,则该过程为绝热可逆过程。作以下假设(1)固体B的体积不随温度变化;(2)对固体B,则 从而 对于气体B 2.26 已知水(H2O, l)在100 C的饱和蒸气压,在此温度、压力下水的摩尔蒸发焓。求在在100 C,101.325 kPa下使1 kg水蒸气全部凝结成液体水时的。设水蒸气适用理想气体状态方程式。 解:该过程为可逆相变 2.28 已知 100 kPa 下冰的熔点为 0 C,此时冰的比熔化焓热 Jg-1. 水的平均定压热容 。求在绝热容器内向1 kg 50 C 的水中投入 0.1 kg 0 C 的 冰后,系统末态
10、的温度。计算时不考虑容器的热容。 解:经粗略估算可知,系统的末态温度 T 应该高于0 C, 因此 2.29 已知 100 kPa 下冰的熔点为0 C,此时冰的比熔化焓热 Jg-1. 水和冰的平均定压热容分别为及。今在绝热容器内向1 kg 50 C 的水中投入 0.8 kg 温度 -20 C 的冰。求: (1)末态的温度。 (2)末态水和冰的质量。 解:1 kg 50 C 的水降温致0 C 时放热 0.8 kg -20 C 的冰升温致0 C 时所吸热 完全融化则需热 因此,只有部分冰熔化。所以系统末态的温度为0 C。设有g的冰熔化,则有 系统冰和水的质量分别为 2.30 蒸汽锅炉中连续不断地注入
11、 20 C的水,将其加热并蒸发成 180 C,饱和蒸汽压 为 1.003 MPa 的水蒸气。求生产 1 kg 水蒸气所需要的热量。 已知:水在 100 C的摩尔蒸发焓,水的平均摩尔定压热容 ,水蒸气的摩尔定压热容与温度的函数关系见附录。 解:将过程看作是恒压过程(),系统的初态和末态分别为 和。插入平衡相变点 ,并将蒸汽看作理想气体,则过程的焓变为 (注:压力对凝聚相焓变的影响可忽略,而理想气体的焓变与压力无关) 查表知 因此,2.31 100 kPa下,冰(H2O, s)的熔点为0 C。在此条件下冰的摩尔融化 热。已知在-10 C 0 C范围内过冷水(H2O, l)和冰的摩尔定压热容分别为
12、和。求在常压及-10 C下过冷水结冰的摩尔凝固焓。 解:过程图示如下 平衡相变点,因此 2.33 25 C下,密闭恒容的容器中有10 g固体奈C10H8(s)在过量的O2(g)中完全燃烧成CO2(g)和H2O(l)。过程放热401.727 kJ。求 (1) (2)的; (3)的; 解:(1)C10H8的分子量M = 128.174,反应 进程。 (2)。 (3)2.34 应用附录中有关物资在25 C的标准摩尔生成焓的数据,计算下列反应在25 C时的及。 (1) (2) (3) 解:查表知 NH3(g)NO(g)H2O(g)H2O(l)-46.1190.25-241.818-285.830 NO
13、2(g)HNO3(l)Fe2O3(s)CO(g)33.18-174.10-824.2-110.525 (1) (2) (3)3.35 应用附录中有关物资的热化学数据,计算 25 C时反应 的标准摩尔反应焓,要求:(1) 应用25 C的标准摩尔生成焓数据;(2) 应用25 C的标准摩尔燃烧焓数据。解: 查表知Compound000因 此,由标准摩尔生成焓由标 准摩尔燃烧焓2.37 已知25 C甲酸甲脂(HCOOCH3, l)的标准摩尔燃烧焓为,甲酸(HCOOH, l)、甲醇(CH3OH, l)、水(H2O, l)及二氧化碳(CO2, g)的标准摩尔生成焓分别为、及。应用这些数据求25 C时下列反
14、应的标准摩尔反应焓。 解:显然要求出甲酸甲脂(HCOOCH3, l)的标准摩尔生成焓 2.39 对于化学反应 应用附录中4种物资在25 C时的标准摩尔生成焓数据及摩尔定压热容与温度的函数关系式:(1) 将表示成温度的函数关系式(2) 求该反应在1000 C时的。解:与温度的关系用Kirchhoff公式表示因 此, 1000 K时,2.40 甲烷与过量50%的空气混合,为使恒压燃烧的最高温度能达到2000 C,求燃烧前混合气体应预热 到多少摄氏度。物资的标准摩尔生成焓数据见附录。空气组成按,计算。各物资的平均摩尔定压热容分别为:;。 解:燃烧为恒压绝热过程。化学反应式 设计途径如下 在下甲烷燃烧的摩尔反应热为,则 可由表出(Kirchhoff公式) 设甲烷的物质量为1 mol,则, 最后得到