收藏 分销(赏)

小学六年下学期数学一二单元.doc

上传人:仙人****88 文档编号:6666312 上传时间:2024-12-20 格式:DOC 页数:29 大小:112.50KB 下载积分:10 金币
下载 相关 举报
小学六年下学期数学一二单元.doc_第1页
第1页 / 共29页
小学六年下学期数学一二单元.doc_第2页
第2页 / 共29页


点击查看更多>>
资源描述
第一单元 负数 教学目标 1.在熟悉的生活情境中初步认识负数,能正确的读、写正数和负数,知道0既不是正数也不是负数。 2.初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的密切联系。 3.能借助数轴初步学会比较正数、0和负数之间的大小。 教材说明 本单元内容是在学生认识了自然数、分数和小数的基础上,结合学生熟悉的生活情境初步认识负数。《标准》第二学段这部分内容的具体目标是:“在熟悉的生活情境中,了解负数的意义,会用负数表示一些日常生活中的问题。”以往负数的教学安排在中学阶段,现在安排在本单元主要是考虑到负数在生活中有着广泛的应用,学生在日常生活中已经接触了一些负数,有了初步认识负数的基础。在此基础上,初步认识负数,能进一步丰富学生对数概念的认识,有利于中小学数学的衔接,为第三学段进一步理解有理数的意义和运算打下良好的基础。 在实际生活中存在很多具有相反意义的量,比如,气温的零上和零下,存折上现金的存入和支取,水位高度的上升和下降,海拔高度的高于海平面和低于海平面,等等。为了表示这样两种相反意义的量,还用学生原有的数概念知识就不够了,这样就自然引入了负数的认识。教材首先通过学生熟悉的生活情境如气温(例1)、存折(例2)中蕴含的具有两种相反意义的量来体会引入负数的必要性,初步理解负数的含义,接下来通过用负数表示日常生活中的简单问题加深对负数意义的理解。在此基础上,例3让学生在直线上表示出正数和负数,初步建立数轴的模型,形式数的比较完整的认知结构,例4借助数轴对气温进行排序让学生初步辨别正数、0和负数之间的大小关系。本单元教材在编排上有以下几个特点。 1.选取学生熟悉的生活素材,加深对负数意义的理解。 为了帮助学生更好的理解负数的意义,体会正数和负数可以表示两种相反意义的量,教材注意结合学生熟悉的生活情境,选取学生感兴趣的素材,唤起学生已有的生活经验,使他们在具体的情境中认识负数。例如,例1通过冬天教室里和教室外的气温对比,室内、室外的气温分别是零上16℃和零下16℃,来引入负数。因为气温是学生每天都能接触到的信息,从气温引入能让学生感受生活中出现负数的必要性。再如,例2通过明细中存入和支取的对比,进一步体会生活中用正负数表示两种相反意义的量。另外,在练习中还安排了用正负数表示相对于海平面的海拔高度、相对于北京时间的其他地区的时间,等等。 2.初步建立数轴的模型,渗透数形结合的思想。 在学生初步认识负数后,例3安排了一个活动情境,在直线上表示从一点向两个相反方向运动后的情形,也就是在直线上表示正数、0和负数的内容,帮助学生进一步感受负数的意义并初步建立数轴的模型。例4进一步让学生把未来一周每天的最低气温在数轴上表示出来,借助数轴来比较数的大小。利用学生对温度高低的亲身体验理解正数、0和负数的大小,初步体会数轴上数的顺序,完成对数的结构的初步构建。 教学建议 1.通过丰富多彩的生活情境,加深学生对负数的认识。 负数的出现,是生活中表示两种相反意义的量的需要。教学时,教师应通过丰富多彩的生活实例,特别是学生感兴趣的一些素材来唤起已有的生活经验,激发学习兴趣,在具体情境中感受出现负数的必要性,并通过两种相反意义的量的对比,初步建立负数的概念。在引入负数以后,教师要鼓励学生举出生活中用正负数表示两种相反意义的量的实际例子,培养学生用数学的眼光观察生活,并通过大量的事例加深对负数的认识,感受数学在实际生活中的广泛应用。 2.把握好教学要求。 对负数的教学要把握好要求,作为中学进一步学习有理数的过渡,小学阶段只要求学生初步认识负数,能在具体的情境中理解负数的意义,初步建立负数的概念。这里不出现正负数的数学定义,而是描述什么样的数是正数,什么样的数是负数,只要求学生能辨认正负数。关于数轴的认识,这里还没有出现严格的数学定义,而是描述性的定义,只是让学生借助已有的在直线上表示正数和0的经验,迁移类推到负数,能在数轴上表示出正数、0和负数所对应的点。关于数的大小比较,特别是两个负数的比较,这里还不是抽象的比较,只要能借助数轴来比较就可以了。 3.本单元内容可安排4课时进行教学。 负数--------------------------------- 2课时 单元测试----------------------------- 2课时 第1课时 负数的认识和意义 教学内容: 人教版《义务教育课程标准实验教科书数学》六年级下册第2~4页例1例2。 教学目标: 1.引导学生在熟悉的生活情境中初步认识负数,能正确地读、写正数和负数;知道0不是正数也不是负数。 2.使学生初步学会用负数表示一些日常生活中的实际问题,体验数学与生活的联系。 3.结合负数的历史,对学生进行爱国主义教育;培养学生良好的数学情感和数学态度。 教学重、难点: 负数的意义。 教学过程: 一、谈话交流 谈话:同学们,刚才一上课大家就做了一组相反的动作,是什么?(起立、坐下。)今天的数学课我们就从这个话题聊起。(板书:相反。)我们周围有很多的自然和社会现象中都存在着相反的情况,请看屏幕:(课件播放图片。)太阳每天从东方升起,西方落下;公交车的站点有人上车和下车;繁华的街市上有买也有卖;激烈的赛场上有输也有赢……你能举出一些这样的现象吗? 二、教学新知 1.表示相反意义的量。 (1)引入实例。 谈话:如果沿着刚才的话题继续“聊”下去的话,就很自然地走进数学,我们一起来看几个例子(课件出示)。 ① 六年级上学期转来6人,本学期转走6人。 ② 张阿姨做生意,二月份盈利1500元,三月份亏损200元。 ③ 与标准体重比,小明重了2.5千克,小华轻了 1.8千克。 ④ 一个蓄水池夏季水位上升米,冬季水位下降米。 指出:这些相反的词语和具体的数量结合起来,就成了一组组“相反意义的量”。(补充板书:相反意义的量。) (2)尝试。 怎样用数学方式来表示这些相反意义的量呢? 请同学们选择一例,试着写出表示方法。 …… (3)展示交流。 2.认识正、负数。 (1)引入正、负数。 谈话:刚才,有同学在6的前面写上“+”表示转来6人,添上“-”表示转走6人(板书:+6 -6),这种表示方法和数学上是完全一致的。 介绍:像“-6”这样的数叫负数(板书:负数);这个数读作:负六。 “-”,在这里有了新的意义和作用,叫“负号”。“+”是正号。 像“+6”是一个正数,读作:正六。我们可以在6的前面加上“+”,也可以省略不写(板书:6)。其实,过去我们认识的很多数都是正数。 (2)试一试。 请你用正、负数来表示出其它几组相反意义的量。 写完后,交流、检查。 3.联系实际,加深认识。 (1)说一说存折上的数各表示什么?(教学例2。) (2)联系生活实际举出一组相反意义的量,并用正、负数来表示。 ① 同桌交流。 ② 全班交流。根据学生发言板书。 这样的正、负数能写完吗?(板书:… …) 强调指出:像过去我们熟悉的这些整数、小数、分数等都是正数,也叫正整数、正小数、正分数;在它们的前面添上负号,就成了负整数、负小数、负分数,统称负数。 4.进一步认识“0”。 (1)看一看、读一读。 谈话:接下来,我们一起来看屏幕:这是去年12月份某天,部分城市的气温情况(出示气温折线统计图)。 哈尔滨: -15 ℃~-3 ℃ 北 京: -5 ℃~5 ℃ 深 圳: 12 ℃~23 ℃ 温度中有正数也有负数,请把负数读出来。 (2)找一找、说一说。 我们来看首都北京当天的温度,“-5 ℃”读作:“负五摄氏度”或“负五度”,表示零下5度;5 ℃又表示什么? 你能在温度计上找出这两个温度所在的刻度吗?(出示温度计,没有刻度数)为什么? 现在你能很快找出来吗?(给出温度计的刻度数,生到前面指。) 说一说,你怎么这么快就找到了? 你能很快找到12 ℃、-3 ℃吗? (3)提升认识。 请学生观察温度计,说一说有什么发现? 在学生发言的基础上,强调:以0℃为分界点,零上温度都用正数来表示,零下温度都用负数来表示。(或负数都表示零下温度,正数都表示零上温度。) “0”是正数,还是负数呢? 在学生发言的基础上,强调:“0”作为正数和负数的分界点,它既不是正数也不是负数。 (4)总结归纳。 如果过去我们所认识的数只分为正数和0的话,那么今天我们可以对“数”进行重新分类: (完善板书。) 5.练一练。 读一读,填一填。(练习一第1题。) 6.出示课题。 同学们,想一想,今天你学习了什么新知识?认识了哪位新朋友?你能为今天的数学课定一个课题吗? 根据学生的回答总结本节课所学内容,并选择板书课题:负数认识。 7.负数的历史。 (1)介绍。 其实,负数的产生和发展有着悠久的历史,我们一起来了解一下(课件配音播放): “中国是世界上最早认识和运用负数的国家,早在2000多年前,我国古代数学著作《九章算术》中对正数和负数就有了记载。魏朝数学家刘徽在该书的注文中则更进一步地概括了正、负数的意义:‘两算得失相反,要令正负以名之。’古代用算筹表示数,这句话的意思是:‘两种得失相反的数,分别叫做正数和负数。’并且规定用红色算筹表示正数,黑色算筹表示负数。由于记录时换色不方便,到了十三世纪,数学家还创造了在数字上面画斜杠来表示负数的方法。国外对负数的认识经历了曲折的过程,并且也出现了各种表示负数的形式,直到20世纪初,才形成了现在的形式。但比中国晚了数百年!” (2)交流。 简单了解了负数的历史,你有什么感受? 三、练习应用 今天,负数在我们的生产和生活中依然有着广泛的用途。让我们就一起走进生活,感受数与生活的密切联系。 课件逐一出示: 1.表示海拔高度。(“做一做”第2题。) 通常,我们规定海平面的海拔高度为0米,珠穆朗玛峰比海平面高8844.43米,可以记作_____________;吐鲁番盆地大约比海平面低155米,它的海拔高度应记作_____________。 2.表示温度。(练习一第2题。) 月球表面白天的平均温度是零上126℃,记作_________℃, 夜间的平均温度为零下150℃,记作_____________℃。 3.(出示电梯按钮图)小红的家在五楼,储藏室在地下一楼。如果她要回家,按哪个按钮?如果到储藏室取东西呢? 4.表示时间。(练习一第3题。) 四、总结延伸 1.学生交流收获。 2.总结。 简要、具体地评价学生的收获,并强调:关于负数,生活中还有更广泛的应用;走进负数,还有更多的知识等待我们去探索,相信同学们在今后的生活和学习中会有更多的收获。 板书设计 负数的认识和意义 正数+6 、+1500 、2.5 负数-6 、-1500 、-2.5 0既不是正数也不是负数 第二课时 用数轴表示正负数 教学目标 认识数轴,并会用数轴上的点表示正负数和0. 教学重点和难点 理解数轴表示正负数的意义,会用数轴上的点表示正负数;同时能够由数轴上的已知点说出其所表示的数。 教学过程 一、 以复习负数的意义导入 1.谁能分别举例说明什么叫正数,什么叫负数吗?(学生自由举例后,投影出示下表) 正数 负数 零 像1、2.5、48等大于零的数叫正数 像-1、—2.5、—48等小于零的数叫负数 0叫做0,0既不是正数也不是负数 2.小黑板出示题目:用正数和负数表示下列各量。指名学生将答案写在小黑板上,集体订正。 (1)零上24摄氏度表示为( ),零下3.5摄氏度表示为( )。 (2)足球比赛中,赢2球计作( )球,输1球记作( )球。 (3)小丽上个月存了压岁钱200元,存折上显示( ),这个星期郊游费取出50元,存折上显示为( )。 (4)超过警戒水位2米,可记作( ),正好到警戒水位可记作( )。 3.我们已经知道了负数的意义,这节课我们将继续探究生活中的负数,并学习一个可以直观表示负数的好方法。 二、创设情境,探究新知 1.在游戏中体会运动变化中的负数 (1)以讲台为起点,面朝教室门为前,也为正,分为两组,每组派2名代表,一名代表负责根据我的口令向相反的方向走,而另一名同学则在黑板上记录自己同伴走的情况,我们看哪一组反应又快又正确。 (2)游戏过后,提问:如果不用按照相反的口令,直接按照口令执行,那么“记作6步” 他应怎么走?“记作—4步”呢?(指名学生回答) 2.教学第5页例3,学会用数轴表示正负数。 (1)像我们刚才的游戏,例题中以大树为起点,向东为正,那么向西应记为什么?怎么走记为“0”?例题中四个小朋友运动后的情况分别记为什么?(生答师板书) (2)明确了这点我们可以知道,当规定一个方向为正时,与之相反的方向则为负。这还可以扩展到一切3运动变化中,指定一个运动变化方向为正,那么另一个变化方向就为负。我们的生活中还有那些相反的变化运动呢? (3)为了更加直观的看,我们在一条直线上来表示他们运动后的情况。这条直线表示他们要走的东西方向的路线,树的位置记为什么? (4)假设直线打上箭头的方向为东,即为正方向。在直线上从起点开始分出相等的线段,用1cm表示实际的1m. (5)大家观察一下这条直线,在0的左边,都是什么数?右边呢?像这样的直线就叫数轴。数轴有什么特征?它与直线有什么区别? (6)它长得比较像什么啊?(出示温度计)大家看这个温度计,我们把它放平放,是不是在0的一边是零下,一边是零上? (7)现在哪个同学能在这个数轴上表示出—1.5? (8)根据例题的要求,往东为正,那么如果你从起点要运动到—1.5? 3.教学第6页例4,学习负数大小的比较。 (1)大家看课本上未来一周的天气情况,里面有没有负数?把它读出来。 (2)教师板书数轴,一边画一边讲解画数轴的方法,注意强调,要在直线上确定一点为0,然后再截取等分线段,要求学生在练习本上画数轴。 (3)让我们把每天最低气温在这个数轴上表示出来。 (4)从最低气温来看,周五和周四哪天更冷呢?你是怎么知道的? (5)我国新疆地区冬季时温度达到—30℃,大概在温度计的那儿?在数轴上表示大约在哪个位置? (6)正、和0负数之间的大小顺序是怎样的? (7)我们刚才比较了—8℃和—6℃,知道—8℃更冷,说明哪个温度高呢?哪个数字更大一些呢? (8)大家观察一下—8和—6在数轴上的点哪个离0近一些?在正方向上,我们知道2比1大,那哪个离0近一些?从数轴的左边到右边的数字有什么规律?从这个情况可以小结出什么呢? 小结:在数轴上从左到右的顺序就是数从小到大的顺序,左边的数比右边的小。 (9)如果不用数轴,直接比较两个负数的大小,还可以怎么判断? 三、巩固练习 1.第7页的做一做的第一题。 2.第7页的做一做的第3题。 四.课堂小结 这节课我们学会了什么内容?比较负数的大小可以怎么比较呢? 第二单元 圆柱与圆锥 单元目标: 1、使学生认识圆柱和圆锥,掌握它们的特征;认识圆柱的底面、侧面和高;认识圆锥的底面和高。 2、使学生理解求圆柱的侧面积和表面积的计算方法,并会正确计算。 3、使学生理解求圆柱、圆锥体积的计算公式,会运用公式计算体积、容积,解决有关的简单实际问题。 单元重点: 掌握圆柱的表面积的计算方法和圆柱、圆锥体积的计算公式。 单元难点: 圆柱、圆锥体积的计算公式的推导 1、圆柱 圆柱的认识 教学内容: 教科书第10—12页圆柱的认识,练习二的第1—4题. 教学目标: 1、借助日常生活中的圆柱体,认识圆柱的特征和圆柱各部分的名称,能看懂圆柱的平面图;认识圆柱侧面的展开图。 2、培养学生细致的观察能力和一定的空间想像能力。 3、激发学生学习的兴趣。 教学重点:认识圆柱的特征。 教学难点:看懂圆柱的平面图。 教学过程: 一、复习 1.已知圆的半径或直径,怎样计算圆的周长?(指名学生回答,使学生熟悉圆的周长公式:C=2πr或C=πd) 2.求下面各圆的周长(教师依次出示题目,然后指名学生回答,其他学生评判答案是否正确) (1)半径是1米(2)直径是3厘米 (3)半径是2分米(4)直径是5分米 二、认识圆柱特征 1.整体感知圆柱 (1)谈谈圆柱.你喜欢圆柱吗?请同学说说喜欢圆柱的理由。(美观、实用、安全、可滚动……) (2)找找圆柱,请同学找出生活中圆柱形的物体。 2.圆柱的表面 (1)摸摸圆柱。请同学摸摸自己手中圆柱的表面,说说发现了什么? (2)指导看书:摸到的上下两个面叫什么?它们的形状大小如何?摸到的圆柱周围的曲面叫什么?(上下两个面叫做底面,它们是完全相同的两个圆。圆柱的曲面叫侧面。) 3.圆柱的高 (1)课件显示:一根竖放的大针管中的药水由高到低的变化过程,引导学生思考:药水水柱的高低和水柱的什么有关? (2)引导小结:水柱的高低和水柱的高有关. (3)结合课本回答什么叫圆柱的高。(板书:圆柱两个底面之间的距离叫做高。) (4)讨论交流:圆柱的高的特点。 ①课件显示:装满牙签的塑料盒,问:这些牙签是圆柱的高吗?假如牙签细一些,再细一些,能装多少根? ②初步感知:面对圆柱的高,你想说些什么? 归纳小结并板书:圆柱的高有无数条,高的长度都相等。 ③深化感知:面对这数不清的高,测量哪一条最为简便? 老师引导学生操作分析,得出测量圆柱边上的这条高最为简便,同时课件上的圆柱体闪烁边上的一条高. 4.圆柱的侧面展开(例2) (1)动手操作:请同学分小组拿出橡皮、蜡笔、水彩笔、固体胶水等有商标纸的圆柱形实物,分别把商标纸剪开,再打开,观察商标纸的形状. 反馈后讨论:展开后得到长方形和正方形的是怎样剪的?展开后得到平行四边形的是怎样剪的? ┌长方形 板书:沿高剪┤斜着剪:平行四边形 └正方形 强调:我们先研究具有代表性的长方形与圆柱的关系. (2)寻求发现.展开的长方形的长和宽与圆柱的关系. ①师生一起把展开的长方形还原成圆柱的侧面,再展开,在重复操作中观察。 ②学生再观察电脑演示上述过程.(用彩色线条突出圆柱底面周长和高转化成长方形长和宽的过程。) ③同学交流后说出自己的发现:这个长方形的长就是圆柱底面的周长,宽就是圆柱的高。 (3)延伸发现.展开的平行四边形的底和高及正方形的边长与圆柱的关系。 ①讨论:平行四边形能否通过什么方法转化成长方形? 课件显示:平行四边形通过割补转变成长方形,再还原成圆柱侧面的动画过程。 ②想一想:当圆柱底面周长与高相等时,侧面展开图是什么形? ③引导小结:不管侧面怎样剪,得到各种图形,都能通过割补的方法转化成长方形.其中正方形是特殊的长方形. 三、巩固练习 1.做第11页“做一做”的第2题。 2.做第15页练习二的第3题。 教师行间巡视,对有困难的学生及时辅导。 3.做第15页练习二的第4题。 四、布置作业 完成一课三练P15的1、2题。 板书: ┌长方形 沿高剪┤斜着剪:平行四边形 └正方形 圆柱的底面周长 → 长方形的长 圆柱的高 → 长方形的宽 圆柱的表面积 教学内容: P13-14页例3-例4,完成“做一做”及练习二的部分习题。 教学目标: 1、在初步认识圆柱的基础上理解圆柱的侧面积和表面积的含义,掌握圆柱侧面积和表面积的计算方法,会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。 2、培养学生良好的空间观念和解决简单的实际问题的能力。 3、通过实践操作,在学生理解圆柱侧面积和表面的含义的同时,培养学生的理解能力和探索意识。 教学重点:掌握圆柱侧面积和表面积的计算方法。 教学难点:运用所学的知识解决简单的实际问题。 教学过程: 一、复习 1.指名学生说出圆柱的特征. 2.口头回答下面问题. (1)一个圆形花池,直径是5米,周长是多少? (2)长方形的面积怎样计算? 板书:长方形的面积=长×宽. 二、新课 1.圆柱的侧面积。 (1)圆柱的侧面积,顾名思义,也就是圆柱侧面的面积。 (2)出示圆柱的展开图:这个展开后的长方形的面积和圆柱的侧面积有什么关系呢? (学生观察很容易看到这个长方形的面积等于圆柱的侧面积) (3)那么,圆柱的侧面积应该怎样计算呢?(引导学生根据展开后的长方形的长和宽与圆柱底面周长和高的关系,可以知道:圆柱的侧面积=底面周长×高) 2.侧面积练习:练习七第5题 (1)学生审题,回答下面的问题: ①这两道题分别已知什么,求什么? ②计算结果要注意什么? (2)指定一名学生板演,其他学生在练习本上做.教师行间巡视,注意发现学生计算中的错误,并及时纠正。 (3)小结:要计算圆柱的侧面积,必须知道圆柱底面周长和高这两个条件,有时题里只给出直径或半径,底面周长这个条件可以通过计算得到,在解题前要注意看清题意再列式。 3. 理解圆柱表面积的含义. (1)让学生把自己制作的圆柱模型展开,观察一下,圆柱的表面由哪几个部分组成?(通过操作,使学生认识到:圆柱的表面由上下两个底面和侧面组成。) (2)圆柱的表面积是指圆柱表面的面积,也就是圆柱的侧面积加上两个底面的面积。 公式:圆柱的表面积=圆柱的侧面积+底面积×2 4.教学例4 (1)出示例3。学生读题,明确已知条件(已知圆柱的高和底面直径,求表面积) (2)求的是厨师帽所用的材料,需要注意些什么?(厨师帽没有下底面,说明它只有一个底面) (3)指定两名学生板演,其他学生独立进行计算.教师行间巡视,注意察看最后的得数是否计算正确。(做完后,集体订正。指名学生回答自己在计算时,最后的得数是怎样取得的。由此指出:这道题使用的材料要比计算得到的结果多一些。因此,这里不能用四舍五入法取近似值。这道题要保留整百平方厘米,省略的十位上即使是4或比4小,都要向前一位进1。这种取近值的方法叫做进一法。) ①侧面积:3.14×20×28=1758.4(平方厘米) ②底面积:3.14×(20÷2)2=314(平方厘米) ③表面积:1758.4+314=2072.4≈2080(平方厘米) 5.小结: 在实际应用中计算圆柱形物体的表面积,要根据实际情况计算各部分的面积.如计算烟筒用铁皮只求一个侧面积;水桶用铁皮是侧面积加上一个底面积;油桶用铁皮是侧面积加上两个底面积,求用料多少,一般采用进一法取值,以保证原材料够用. 三、巩固练习 1.做第14页“做一做”。(求表面积包括哪些部分?) 2. 练习七第6题。 板书: 圆柱的侧面积=底面周长×高 圆柱的表面积=圆柱的侧面积+底面积×2 例4:①侧面积:3.14×20×28=1758.4(平方厘米) ②底面积:3.14×(20÷2)2=314(平方厘米) ③表面积:1758.4+314=2072.4≈2080(平方厘米) 圆柱的表面积练习课 教学内容:练习二余下的练习。 教学目标: 1、会正确计算圆柱的侧面积和表面积,能解决一些有关实际生活的问题。 2、培养学生良好的空间观念和解决简单的实际问题的能力。 教学重点: 运用所学的知识解决简单的实际问题。 教学难点: 运用所学的知识解决简单的实际问题。 教学过程: 一、复习 1、圆柱的侧面积怎么求?(圆柱的侧面积=底面周长×高) 2、圆柱的表面积怎么求?(圆柱的表面积=圆柱的侧面积+底面积×2) 3、练习二第14题:根据已知条件求出圆柱的侧面积和表面积。(第②题已知圆柱的底面周长,对于求侧面积较有利。但在求底面积时,要先应用C÷π÷2来求出圆柱的底面半径) 二、实际应用 1、练习二第13题 (1)复习长方体、正方体的表面积公式: 长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6 (2)学生独立完成第13题:计算长方体、正方体、圆柱体的表面积,并指名板演。 2、练习二第7题 (1)用教具辅助,引导学生思考:前轮转动一周,压路面的面积是指什么?(通过圆柱教具的直观演示,使学生看到所压路面的面积就是前轮的侧面积) (2)学生独立完成这道题,集体订正。 3、练习二第9题 (1)学生通过读题理解题意,思考“抹水泥的部分”是指哪几个面?(侧面和下底面,也就是只有一个底面积) (2)指名板演,其他学生独立完成于课堂练习本上。 4、练习二第16题 (1)学生读题理解题意后尝试独立解题。 (2)集体评讲,让学生理解计算“制作中间的轴需要多大的硬纸板”,就是计算硬纸轴的侧面积,卫生纸的宽度就是硬纸板的高度。 5、练习二第19题 (1)学生小组讨论:可以漆色的面有哪些? (2)通过教具演示,使学生明白圆柱及长方体表面被遮住的部分刚好是圆柱的三个底面积。因此,计算油漆的面积就是计算长方体表面积与圆柱侧面积之和减去圆柱的一个底面积。 (3)提醒学生将计算结果化成以平方米为单位的数,并可根据实际情况保留近似数。 三、布置作业 练习二第8、10、15、17、18及20题完成在作业本上。 板书: 圆柱的侧面积=底面周长×高 圆柱的表面积=圆柱的侧面积+底面积×2 长方体的表面积=(长×宽+长×高+宽×高)×2 正方体的表面积=棱长×棱长×6 (3)圆柱的体积 教学内容: P19-20页例5、例6及补充例题,完成“做一做”及练习三第1~4题。 教学目标: 1、通过用切割拼合的方法借助长方体的体积公式推导出圆柱的体积公式,能够运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力 3、渗透转化思想,培养学生的自主探索意识。 教学重点:掌握圆柱体积的计算公式。 教学难点:圆柱体积的计算公式的推导。 教学过程: 一、复习 1、长方体的体积公式是什么?(长方体的体积=长×宽×高,长方体和正方体体积的统一公式“底面积×高”,即长方体的体积=底面积×高) 2、拿出一个圆柱形物体,指名学生指出圆柱的底面、高、侧面、表面各是什么,怎么求。 3、复习圆面积计算公式的推导过程:把圆等分切割,拼成一个近似的长方形,找出圆和所拼成的长方形之间的关系,再利用求长方形面积的计算公式导出求圆面积的计算公式。 二、新课 1、圆柱体积计算公式的推导。 (1)用将圆转化成长方形来求出圆的面积的方法来推导圆柱的体积。(沿着圆柱底面的扇形和圆柱的高把圆柱切开,可以得到大小相等的16块,把它们拼成一个近似长方体的立体图形——课件演示) (2)由于我们分的不够细,所以看起来还不太像长方体;如果分成的扇形越多,拼成的立体图形就越接近于长方体了。(课件演示将圆柱细分,拼成一个长方体) (3)通过观察,使学生明确:长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。(长方体的体积=底面积×高,所以圆柱的体积=底面积×高,V=Sh) 2、教学补充例题 (1)出示补充例题:一根圆柱形钢材,底面积是50平方厘米,高是2.1米。它的体积是多少? (2)指名学生分别回答下面的问题: ① 这道题已知什么?求什么? ② 能不能根据公式直接计算? ③ 计算之前要注意什么?(计算时既要分析已知条件和问题,还要注意要先统一计量单位) (3)出示下面几种解答方案,让学生判断哪个是正确的. ①V=Sh 50×2.1=105(立方厘米) 答:它的体积是105立方厘米。 ②2.1米=210厘米 V=Sh 50×210=10500(立方厘米) 答:它的体积是10500立方厘米。 ③50平方厘米=0.5平方米 V=Sh 0.5×2.1=1.05(立方米) 答:它的体积是1.05立方米。 ④50平方厘米=0.005平方米 V=Sh 0.005×2.1=0.0105(立方米) 答:它的体积是0.0105立方米。 先让学生思考,然后指名学生回答哪个是正确的解答,并比较一下哪一种解答更简单.对不正确的第①、③种解答要说说错在什么地方. (4)做第20页的“做一做”。 学生独立做在练习本上,做完后集体订正. 3、引导思考:如果已知圆柱底面半径r和高h,圆柱体积的计算公式是怎样的?(V=πr2h) 4、教学例6 (1)出示例5,并让学生思考:要知道杯子能不能装下这袋牛奶,得先知道什么?(应先知道杯子的容积) (2)学生尝试完成例6。 ① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml) 5、比较一下补充例题、例6有哪些相同的地方和不同的地方?(相同的是都要用圆柱的体积计算公式进行计算;不同的是补充例题已给出底面积,可直接应用公式计算;例6只知道底面直径,要先求底面积,再求体积.) 三、巩固练习 1、做第21页练习三的第1题. 2、练习三的第2题. 这两道题分别是已知底面半径(或直径)和高,求圆柱体积的习题.要求学生审题后,知道要先求出底面积,再求圆柱的体积。 四、布置作业 练习三第3、4题。 板书: 圆柱的体积=底面积×高 V=Sh或V=πr2h 例6:① 杯子的底面积:3.14×(8÷2)2=3.14×42=3.14×16=50.24(cm2) ② 杯子的容积:50.24×10=502.4(cm3)=502.4(ml) 圆柱的体积练习课 教学目标: 1、使学生能够运用公式正确地计算圆柱的体积和容积。 2、初步学会用转化的数学思想和方法,解决实际问题的能力 4、渗透转化思想,培养学生的自主探索意识。 教学重点:掌握圆柱体积的计算公式。 教学难点:灵活应用圆柱的体积公式解决实际问题。 教学过程: 一、复习 1、复习圆柱体积的推导过程 长方体的底面积等于圆柱的底面积,长方体的高就是圆柱的高。 长方体的体积=底面积×高,所以圆柱的体积=底面积×高,即V=Sh。 2、复习长方体的体积公式后,让学生独立完成练习三第6题,并指名板演。 二、解决实际问题 1、练习三第7题。 学生思考:要求粮囤所能装的玉米的重量,需先知道什么?然后独立完成。 2、练习三第5题。 (1)指导学生变换公式:因为V=Sh,所以h=V÷S。也可以列方程解答。 (2)学生选择喜爱的方法解答这道题目。 3、练习三第8题。 (1)学生读题后,指名说说对题意的理解:求减少的土方石就是求月亮门所占的空间,而月亮门所占的空间是一个底面直径为2米,高为0.25米的圆柱。 (2)在充分理解题意后学生独立完成,集体订正。 4、练习三第9、10题 (1)学生独立审题,完成9、10两题。 (2)评讲第9题:要怎样才能判断出800ml的果汁够倒三杯吗?必须先求出什么?怎么求?(需先求出圆柱形玻璃杯的容积,用公式V=Sh) (3)指名说说解答第10题的思路:根据两个圆柱的底面积相等这一条件,先求出其中一个圆柱的底面积。利用这个底面积再求出另一个圆柱的体积。 三、布置作业 完成“一课三练”的相关练习。 2、圆锥 圆锥的认识 教学内容: 教科书P23-26的内容,P24“做一做”,完成练习四的第1、2题。 教学目标: 1、认识圆锥,圆锥的高和侧面,掌握圆锥的特征,会看圆锥的平面图,会正确测量圆锥的高,能根据实验材料正确制作圆锥。 2、通过动手制作圆锥和测量圆锥的高,培养学生的动手操作能力和一定的空间想象能力。 3、培养学生的自主探索意识,激发学生强烈的求知欲望。 教学重点:掌握圆锥的特征。 教学难点:正确理解圆锥的组成。 教学过程: 一、复习 1、圆柱体积的计算公式是什么? 2、圆柱的特征是什么? 二、新课 1、圆锥的认识 (1)让学生拿着圆锥模型观察和摆弄后,指定几名学生说出自己观察的结果,从而使学生认识到圆锥有一个曲面,一个顶点和一个面是圆的,等等。 (2)圆锥有一个顶点,它的底面是一个圆、(在图上标出顶点,底面及其圆心O) (3)圆锥有一个曲面,圆锥的这个曲面叫做侧面。(在图上标出侧面) (4)让学生看着教具,指出:从圆锥的顶点到底面圆心的距离叫做高。(沿着曲面上的线都不是圆锥的高,由于圆锥只有一个顶点,所以圆锥只有一条高) 2、小结 圆锥的特征(可以启发学生总结),强调底面和高的特点,使学生弄清圆锥的特征是:底面是圆,侧面是一个曲面,有一个顶点和一条高. 3、测量圆锥的高 由于圆锥的高在它的内部,我们不能直接量出它的长度,这就需要借助一块平板来测量。 (1)先把圆锥的底面放平; (2)用一块平板水平地放在圆锥的顶点上面; (3)竖直地量出平板和底面之间的距离。 4、教学圆锥侧面的展开图 (1)学生猜想圆锥的侧面展开后会是什么图形呢? (2)实验来得出圆锥的侧面展开后是一个扇形。 5、虚拟的圆锥 (1)先让学生猜测:一个长方形通过旋转,可以形成一个圆柱。那么将三角形制片绕着一条直角边旋转,会形成什么形状? (2)通过操作,使学生发现转动出来的是圆锥,并从旋转的角度认识圆锥。 三、课堂练习 1、做第24页“做一做”的题目。 让学生拿出课前准备好的模型纸样,先做成圆锥,然后让学生试着独立量出它的底面直径.教师行间巡视,对有困难的学生及时辅导。 2、练习四的第1题。 (1)让学生自由地观察,只要是接近于圆柱、圆锥的都可以指出。 (2)让学生说说自己周围还有哪些物体是由圆柱、圆锥组成的。 3.完成练习四的第2题。 四、总结 关于圆锥你知道了些什么?你能向同学介绍你手中的圆锥吗? 圆锥的体积 教学内容: 第25~26页,例2、例3及练习四的第3~8题。 教学目标: 1、通过分小组倒水实验,使学生自主探索出圆锥体积和圆柱体积之间的关系,初步掌握圆锥体积的计算公式,并能运用公式正确地计算圆锥的体积,解决实际生活中有关圆锥体积计算的简单问题。 2、借助已有的生活和学习经验,在小组活动过程中,培养学生的动手操作能力和自主探索能力。 3、通过小组活动,实验操作,巧妙设置探索障碍,激发学生的自主探索意识,发展学生的空间观念。 教学重点:掌握圆锥体积的计算公式。 教学难点:正确探索出圆锥体积和圆柱体积之间的关系。 教学过程: 一、复习 1、圆锥有什么特征?(使学生进一步熟悉圆锥的特征:底面、侧面、高和顶点) 2、圆柱体积的计算公式是什么? 指名学生回答,并板书公式:“圆柱的体积=底面积×高”。 二、新课 1、教学圆锥体积的计算公式。 (1)回忆圆柱体积计算公式的推导过程,使学生明确求圆柱的体积是通过切拼成长方体来求得的. (2)圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?(指出:我们可以通过实验的方法,得到计算圆锥体积的公式) (3)拿出等底等高的圆柱和圆锥各一个,通过演示,使学生发现“这个圆锥和圆柱是等底等高的,下面我们通过实验,看看它们之间的体积有什么关系?” (4)先在圆锥里装满水,然后倒入圆柱。让学生注意观察,倒几次正好把圆柱装满? (教师让学生注意,记录几次,使学生清楚地看到倒3次正好把圆柱装满。) (5)这说明了什么?(这说明圆锥的体积是和它等底等高的圆柱的体积的 ) 板书:圆锥的体积= ×圆柱的体积= ×底面积×高,字母公式:V= Sh 2、教学练习四第3题 (1)这道题已知什么?求什么?已知圆锥的底面积和高应该怎样计算? (2)引导学生对照圆锥体积的计算公式代入数据,然后让学生自己进行计算,做完后集体订正。 3、巩固练习:完成练习四第4题。 4、教学例3. (1)出示例3 已知近似于圆锥形的沙堆的底面直径和高,求这堆沙堆的的体积。 (2)要求沙堆的体积需要已知
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服