收藏 分销(赏)

曲线与方程理.doc

上传人:仙人****88 文档编号:6648981 上传时间:2024-12-19 格式:DOC 页数:4 大小:170.50KB 下载积分:10 金币
下载 相关 举报
曲线与方程理.doc_第1页
第1页 / 共4页
曲线与方程理.doc_第2页
第2页 / 共4页


点击查看更多>>
资源描述
曲线与方程(理) 基础梳理(研读教材选修2-1第二章33—38) 1.曲线与方程 一般地,在平面直角坐标系中,如果某曲线C上的点与一个二元方程f(x,y)=0的实数解建立了如下关系: (1)曲线上点的坐标都是这个方程的解. (2)以这个方程的解为坐标的点都是曲线上的点.那么这个方程叫做曲线的方程,这条曲线叫做方程的曲线. 2.直接法求动点的轨迹方程的一般步骤 (1)建立适当的坐标系,用有序实数对(x,y)表示曲线上任意一点M的坐标. (2)写出适合条件p的点M的集合P={M|p(M)}. (3)用坐标表示条件p(M),列出方程f(x,y)=0. (4)化方程f(x,y)=0为最简形式. (5)说明以化简后的方程的解为坐标的点都在曲线上. 3.两曲线的交点 (1)由曲线方程的定义可知,两条曲线交点的坐标应该是两个曲线方程的公共解,即两个曲线方程组成的方程组的实数解;反过来,方程组有几组解,两条曲线就有几个交点,方程组无解,两条曲线就没有交点. (2)两条曲线有交点的充要条件是它们的方程所组成的方程组有实数解.可见,求曲线的交点问题,就是求由它们的方程所组成的方程组的实数解问题. 双基自测 1.f(x0,y0)=0是点P(x0,y0)在曲线f(x,y)=0上的(  ).A充分不必要条件B必要不充分条件C充要条件D既不充分也不必要条件 2.方程x2+xy=x的曲线是(  ). A.一个点B.一条直线C.两条直线D.一个点和一条直线 3.已知点P是直线2x-y+3=0上的一个动点,定点M(-1,2),Q是线段PM延长线上的一点,且|PM|=|MQ|,则Q点的轨迹方程是(  ). A.2x+y+1=0 B.2x-y-5=0 C.2x-y-1=0 D.2x-y+5=0 4.若点P到直线x=-1的距离比它到点(2,0)的距离小1,则点P的轨迹为(  ). A.圆 B.椭圆 C.双曲线 D.抛物线 5.曲线C是平面内与两个定点F1(-1,0)和F2(1,0)的距离的积等于常数a2(a>1)的点的轨迹.给出下列三个结论: ①曲线C过坐标原点;②曲线C关于坐标原点对称; ③若点P在曲线C上,则△F1PF2的面积不大于a2. 其中,所有正确结论的序号是________. 典型例题 【例1】已知⊙O的方程是x2+y2-2=0,⊙O′的方程是x2+y2-8x+10=0,如图所示.由动点P向⊙O和⊙O′所引的切线长相等,求动点P的轨迹方程. 【例2】一动圆与圆x2+y2+6x+5=0外切,同时与圆x2+y2-6x-91=0内切,求动圆圆心M的轨迹方程,并说明它是什么曲线. 【例3】已知抛物线y2=4px(p>0),O为顶点,A,B为抛物线上的两动点,且满足OA⊥OB,如果OM⊥AB于M点,求点M的轨迹方程. 能力提升 1.【2012高考全国卷理3】 椭圆的中心在原点,焦距为4 一条准线为x=-4 ,则该椭圆的方程为 A +=1 B +=1C +=1 D +=1 2.如图所示,过点P(2,4)作互相垂直的直线l1,l2.若l1交x轴于A,l2交y轴于B,求线段AB中点M的轨迹方程. 3.如图所示,从双曲线x2-y2=1上一点Q引直线x+y=2的垂线,垂足为N.求线段QN的中点P的轨迹方程. 4.【2012高考湖北理】(本小题满分13分) 设是单位圆上的任意一点,是过点与轴垂直的直线,是直线与 轴的交点,点在直线上,且满足. 当点在圆上运动时,记点M的轨迹为曲线. (Ⅰ)求曲线的方程,判断曲线为何种圆锥曲线,并求其焦点坐标; (Ⅱ)过原点且斜率为的直线交曲线于,两点,其中在第一象限,它在轴上的射影为点,直线交曲线于另一点. 是否存在,使得对任意的,都有?若存在,求的值;若不存在,请说明理由. 5.【2012高考四川理21】(本小题满分12分) 如图,动点到两定点、构成,且,设动点的轨迹为。 (Ⅰ)求轨迹的方程; (Ⅱ)设直线与轴交于点,与轨迹相交于点,且,求的取值范围。 6.【2012高考辽宁理20】(本小题满分12分) 如图,椭圆:,a,b为常数),动圆,。点分别为的左,右顶点,与相交于A,B,C,D四点。 (Ⅰ)求直线与直线交点M的轨迹方程; (Ⅱ)设动圆与相交于四点,其中, 。若矩形与矩形的面积相等,证明:为定值。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服