收藏 分销(赏)

向量-三角恒等变换-解三角形-数列基本公式.doc

上传人:a199****6536 文档编号:6646305 上传时间:2024-12-19 格式:DOC 页数:7 大小:729.04KB
下载 相关 举报
向量-三角恒等变换-解三角形-数列基本公式.doc_第1页
第1页 / 共7页
向量-三角恒等变换-解三角形-数列基本公式.doc_第2页
第2页 / 共7页
点击查看更多>>
资源描述
向量,三角恒等变换,解三角形,数列基本公式 向量知识点 一、向量有关概念 名称 定义 备注 向量 既有_______又有_______的量。 向量不能比较大小 向量的模 向量的大小叫做向量的_______(或_______) 记为_______ 若已知,则,模可以比较大小 零向量 长度为_______的向量,记为_______ 零向量与所有向量平行; 与所有向量垂直. 单位向量 长度等于_______的向量 平行向量 方向_______或_______的非零向量. 与任一向量平行或共线; 直线平行:不包括重合情况 共线向量:包括重合情况 若、都是非零向量,存在实数λ,使 共线向量 _______向量又叫共线向量。 相等向量 长度_______且方向_______的向量 特点:1、长度相等; 2、平行且方向一致 相反向量 长度_______且方向_______的向量 的相反向量是本身 特点:1、长度相等; 2、平行且方向相反 _______ 二、向量的线性运算 向量运算 定义 法则(或几何意义) 备注 加法 求两个向量和的运算 A B C A B C 三角形法则: 特点:首尾相连,始终如一。 在中, A B C D 平行四边形法则:A B C A B C 特点:共同始点为相邻边的和是平行四边形中有共同始点的对角线。 减法 求与的相反向量的和的运算叫做与的差 A B C 三角形法则: 特点:差向量是从减向量的终点指向被减向量的终点。 数乘 求实数与向量的积的运算 1、当=_______ 2、当时,与的方向_______;当时,与的方向_______;当时,=_____;当时,则_____ 三、向量的表示方法 A B O 1、字母表示法:如、; 2、几何表示法:用一条______________表示向量; 3、坐标表示法:在平面直角坐标系中,设向量的始点为坐标原点, 终点坐标为A(X,Y),则向量坐标记为(X,Y) 四、两个向量的夹角 1、定义:已知两个_______向量与,作,,则叫做向量与的夹角。 2、范围:,与同向时,夹角_______;与反向时,夹角_______ 3、向量垂直:如果向量与的夹角是_______时,则与垂直,记为_______ 五、平面向量基本定理及坐标表示 1、定理:如果、是同一平面内的两个_______向量,那么对于这一平面内的任意向量,_______一对实数、,使=___________,其中,___________叫做表示这一平面所有向量的一组基底。 2、平面向量的正交分解:把一个向量分解为两个_______的向量,叫做把向量正交分解。 3、平面向量的坐标表示:在平面直角坐标系中,分别取与X轴、Y轴方向相同的两个单位向量、作为基底,对于平面内的一个向量,有且只有一对实数对X,Y,使,把有序实数对_______叫做向量的坐标,记作=_______,其中_____叫做在X轴上的坐标,其中_____叫做在Y轴上的坐标。即 =(X,Y) 六、平面向量的坐标运算: 1、向量坐标求法:已知,,则,即一个向量的坐标等于该向量_______的坐标减去_______的坐标。 2、向量坐标加法、减法、数乘运算:设, 加法:+= 减法:—= 数乘: 3、平面向量共线与垂直的表示:设,,其中,则 与共线(或) 七、平面向量数量积 1、已知两个非零向量与,它们的夹角为,把数量_______叫做与的数量积(或内积),记作。,即。=_______,并规定零向量与任一向量的数量积为_______ 注:两个非零向量和的数量积是一个数量,不是向量,其值为两向量的模与它们夹角的余弦的乘积,其符号由夹角的余弦决定。 当; 当 当; 数量积是内积,用表示,不能用或表示 2、一向量在另一向量方向上投影 定义: _______(_______)叫做在的方向上(在的方向上)的投影。如图,,过作垂直于直线OA,垂足为,则 O B A O B A A 0 B 图1 图2 图3 叫做向量在的方向上 当为锐角时,如图1,它是_______; 当为钝角时,如图2,它是_______; 当为直角时,如图3,它是_______; 当=时,它是_______; 当=时,它是_______; 的几何意义:数量积等于的长度与______________的乘积 3、平面向量数量积的重要性质: 设、都是非零向量,是与方向相同的单位向量,是与的夹角,则 .= 。=_______ 当与同向时,=_______; 当与反向时,=_______; 特别是。= =_______ 4、平面向量数量积的运算律 交换律:+=_______ 数乘结合律:______________=______________ 分配律:(+)=______________ 八、向量的应用: 1证明线段平行问题,包括相似问题,常用向量平行(共线)的充要条件 与共线(或) A B C D 2、证明垂直问题,常用向量垂直的充要条件: 3、求夹角的问题,利用夹角公式 4、求线段的长度,可以利用向量的线性运算,向量的模 若,则 若,则 5、如图所示,在中,D是BC边上有中点(AD是的BC边上中线),则有 三角函数恒等变换 (一)基本公式: 1、两角和与差的公式:① ; ② ; ③ 。 理解:①两角和与差的公式揭示“同名不同角的三角函数的运算规律". ②对公式会正用、逆用、变形用。③善于对角按需要变形。 2、二倍角公式:① ; ② = = ; ③ . 理解:二倍角公式揭示“具有倍数关系的两角的三角函数的运算规律”。 3、辅助角公式和万能公式:①辅助角公式: ; (其中 ,所在的象限由点( )所在的象限所确定。) 4、了解以下公式:①半角公式:;; ②积化和差公式:;; ;。 ③和差化积公式:;; ;。 (二)、三角恒等变换是本章的主题和核心。 1、三角恒等变换的入手点:“角”、“名”、“形”。其中角的变换尤应注意。 2、三角恒等变换的核心:角的变换和角的限定 3、三角恒等变换的手段和方法:①角的配凑;如:等等; ②降次与升次:升次公式: ; ; =_________________=______________ 降次公式: ; 。 ③常值代换:特别是1的代换。如:等等。 =________________ =____________________ 解三角形 1、内角和:; 2、(1);;; (2);;; ;;; 3、(1);;; (2);;; ;;; 4、两边之和大于第三边,两边之差小于第三边; 5、大边对大角,大角对大边; 6、正弦定理:(R指三角形外接圆半径) ((1) 解三角形:①已知两边和其中一边的对角;②已知两角和一边; (2) 注意已知两边和其中一边的对角解三角形有一解、两解及无解情形) 变形: 7、余弦定理: 变形: ; ; ; ; ; ; (解三角形①已知两边一夹角;②已知三边) 8、已知形如或,由变形; 数列基本公式 1、一般数列的通项an与前n项和Sn的关系:an=______________  2、等差数列的通项公an=___________=___________    (其中a1为首项、ak为已知的第k项)  当d≠0时,an是关于n的一次式;当d=0时,an是一个常数。 3、等差数列的前n项和公式:Sn=____________=_____________    当d≠0时,Sn是关于n的二次式且常数项为0;当d=0时(a1≠0),Sn=na1是关于n的正比例式. 4、等比数列的通项公式: an=___________ = ______________    (其中a1为首项、ak为已知的第k项,an≠0) 5、等比数列的前n项和公式:当q=1时,Sn=n a1     (是关于n的正比例式); 当q≠1时,Sn=______________ = _____________  三、高中数学中有关等差、等比数列的结论 1、等差数列{an}的任意连续m项的和构成的数列Sm、S2m—Sm、S3m-S2m、S4m — S3m、……仍为等差数列。 2、等差数列{an}中,若m+n=p+q=2k,则_________________  3、等比数列{an}中,若m+n=p+q=2k,则_________________  4、等比数列{an}的任意连续m项的和构成的数列Sm、S2m-Sm、S3m—S2m、S4m - S3m、……仍为等比数列。 5、两个等比数列{an}与{bn}的积、商、倒数组成的数列 {an bn}、 、 仍为等比数列,公比分别为___,____,____ 6、{an}为等差数列,则  (c〉0)是等比数列,公比为____ 7、{bn}(bn>0)是等比数列,则{logcbn} (c>0且c1) 是等差数列,公差为______ 8。 在等差数列 中: (1)若项数为 ,则                       (2)若数为 则,    ,   9。 在等比数列 中: 若项数为 ,则     
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服