收藏 分销(赏)

期末复习讲义专题一.doc

上传人:仙人****88 文档编号:6637659 上传时间:2024-12-18 格式:DOC 页数:21 大小:1.45MB
下载 相关 举报
期末复习讲义专题一.doc_第1页
第1页 / 共21页
期末复习讲义专题一.doc_第2页
第2页 / 共21页
点击查看更多>>
资源描述
期末专题一:一次函数与四边形 1、一列快车由甲地开往乙地,一列慢车由乙地开往甲地,两车同时出发,匀速运动,快车离乙地的路程y1(km)与行使的时间x(h)之间的函数关系,如图中AB所示;慢车离乙地的路程y2(km)与行使的时间x(h)之间的函数关系,如图中线段OC所示,根据图象进行以下研究. 解读信息: (1)甲,乙两地之间的距离为 (2)线段AB的解析式为 线段OC的解析式为 问题解决: (3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式, (1)甲,乙两地之间的距离为 450 km; (2)线段AB的解析式为: y1=450-150x ,(0≤x≤3);    线段OC的解析式为: y2=75x      ,(0≤x≤6); (3)设快,慢车之间的距离为y(km),求y与慢车行驶时间x(h)的函数关系式:    由(2)可以得出距离关系式:    0≤x≤3时,快慢车都在行驶,y=│y1-y 2│=│450-225x│ ,(0≤x≤3)    3≤x≤6时,快车已到站停止行驶,x=3时快车刚到站,两车距离为225 km,               y=75x ,(3≤x≤6)    函数图象:              2、(2013•无锡)如图1,菱形ABCD中,∠A=60°,点P从A出发,以2cm/s的速度沿边AB、BC、CD匀速运动到D终止,点Q从A与P同时出发,沿边AD匀速运动到D终止,设点P运动的时间为t(s).△APQ的面积S(cm2)与t(s)之间函数关系的图象由图2中的曲线段OE与线段EF、FG给出. (1)求点Q运动的速度; (2)求图2中线段FG的函数关系式; (3)问:是否存在这样的t,使PQ将菱形ABCD的面积恰好分成1:5的两部分?若存在,求出这样的t的值;若不存在,请说明理由. 3、如图已知一次函数y=-1/2x=b的图像经过点A(2,3)AB垂直于X轴,垂足为B连接OA设点P为直线y=-1/2x+b上的一点 且在第一象限内经过P作x轴的垂线垂足为Q若三角形POQ的面积=5/4三角形AOB的面积求点P的坐标 解:y=-0.5x+b过A(2,3),则b=4 ∴y=-0.5x+4 ∵P在直线y=-0.5x+4 上,设P(x, -0.5x+4)且SΔAOB=2×3/2=3 SΔPOQ=0.5x(-0.5x+4)=(5/4) ,SΔAOB=15/4 ∴x²-8x+15=0 解得:x1=3,x2=5 故:P(3,2.5)或P(5,1.5) 4、(2013•天水)如图1,在平面直角坐标系中,已知△AOB是等边三角形,点A的坐标是(0,4),点B在第一象限,点P是x轴上的一个动点,连接AP,并把△AOP绕着点A按逆时针方向旋转,使边AO与AB重合,得到△ABD. (1)求直线AB的解析式; (2)当点P运动到点(,0)时,求此时DP的长及点D的坐标; (3)是否存在点P,使△OPD的面积等于?若存在,请求出符合条件的点P的坐标;若不存在,请说明理由. 考点: 一次函数综合题. 专题: 压轴题. 分析: (1)过点B作BE⊥y轴于点E,作BF⊥x轴于点F.依题意得BF=OE=2,利用勾股定理求出OF,然后可得点B的坐标.设直线AB的解析式是y=kx+b,把已知坐标代入可求解. (2)由△ABD由△AOP旋转得到,证明△ABD≌△AOP.AP=AD,∠DAB=∠PAO,∠DAP=∠BAO=60°,△ADP是等边三角形.利用勾股定理求出DP.在Rt△BDG中,∠BGD=90°,∠DBG=60°.利用三角函数求出BG=BD•cos60°,DG=BD•sin60°.然后求出OH,DH,然后求出点D的坐标. (3)本题分三种情况进行讨论,设点P的坐标为(t,0): ①当P在x轴正半轴上时,即t>0时,关键是求出D点的纵坐标,方法同(2),在直角三角形DBG中,可根据BD即OP的长和∠DBG的正弦函数求出DG的表达式,即可求出DH的长,根据已知的△OPD的面积可列出一个关于t的方程,即可求出t的值. ②当P在x轴负半轴,但D在x轴上方时.即<t≤0时,方法同①类似,也是在直角三角形DBG用BD的长表示出DG,进而求出GF的长,然后同①. ③当P在x轴负半轴,D在x轴下方时,即t≤时,方法同②. 综合上面三种情况即可求出符合条件的t的值. 解答: 解:(1)如图1,过点B作BE⊥y轴于点E,作BF⊥x轴于点F.由已知得: BF=OE=2,OF==, ∴点B的坐标是(,2) 设直线AB的解析式是y=kx+b(k≠0),则有. 解得. ∴直线AB的解析式是y=x+4; (2)如图2,∵△ABD由△AOP旋转得到, ∴△ABD≌△AOP, ∴AP=AD,∠DAB=∠PAO, ∴∠DAP=∠BAO=60°, ∴△ADP是等边三角形, ∴DP=AP=. 如图2,过点D作DH⊥x轴于点H,延长EB交DH于点G,则BG⊥DH. 方法(一) 在Rt△BDG中,∠BGD=90°,∠DBG=60°. ∴BG=BD•cos60°=×=. DG=BD•sin60°=×=. ∴OH=EG=,DH= ∴点D的坐标为(,) 方法(二) 易得∠AEB=∠BGD=90°,∠ABE=∠BDG,∴△ABE∽△BDG, ∴;而AE=2,BD=OP=,BE=2,AB=4, 则有,解得BG=,DG=; ∴OH=,DH=; ∴点D的坐标为(,). (3)假设存在点P,在它的运动过程中,使△OPD的面积等于. 设点P为(t,0),下面分三种情况讨论: ①当t>0时,如图,BD=OP=t,DG=t, ∴DH=2+t. ∵△OPD的面积等于, ∴, 解得,(舍去) ∴点P1的坐标为(,0). ②∵当D在x轴上时,根据勾股定理求出BD==OP, ∴当<t≤0时,如图,BD=OP=﹣t,DG=﹣t, ∴GH=BF=2﹣(﹣t)=2+t. ∵△OPD的面积等于, ∴, 解得,, ∴点P2的坐标为(,0),点P3的坐标为(,0). ③当t≤时,如图3,BD=OP=﹣t,DG=﹣t, ∴DH=﹣t﹣2. ∵△OPD的面积等于, ∴(﹣t)【﹣(2+t)】=, 解得(舍去), ∴点P4的坐标为(,0), 综上所述,点P的坐标分别为P1(,0)、P2(,0)、P3(,0)、 P4(,0). 5、(2013济宁)如图,直线y=﹣x+4与坐标轴分别交于点A、B,与直线y=x交于点C.在线段OA上,动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动,同时动点P从点A出发向点O做匀速运动,当点P、Q其中一点停止运动时,另一点也停止运动.分别过点P、Q作x轴的垂线,交直线AB、OC于点E、F,连接EF.若运动时间为t秒,在运动过程中四边形PEFQ总为矩形(点P、Q重合除外). (1)求点P运动的速度是多少? (2)当t为多少秒时,矩形PEFQ为正方形? (3)当t为多少秒时,矩形PEFQ的面积S最大?并求出最大值. 考点:一次函数综合题. 分析:(1)根据直线y=﹣x+4与坐标轴分别交于点A、B,得出A,B点的坐标,再利用EP∥BO,得出==,据此可以求得点P的运动速度; (2)当PQ=PE时,以及当PQ=PE时,矩形PEFQ为正方形,分别求出即可; (3)根据(2)中所求得出s与t的函数关系式,进而利用二次函数性质求出即可. 解答:解:(1)∵直线y=﹣x+4与坐标轴分别交于点A、B, ∴x=0时,y=4,y=0时,x=8, ∴==, 当t秒时,QO=FQ=t,则EP=t, ∵EP∥BO, ∴==, ∴AP=2t, ∵动点Q以每秒1个单位长度的速度从点O出发向点A做匀速运动, ∴点P运动的速度是每秒2个单位长度; (2)如图1,当PQ=PE时,矩形PEFQ为正方形, 则∵OQ=FQ=t,PA=2t, ∴QP=8﹣t﹣2t=8﹣3t, ∴8﹣3t=t, 解得:t=2, 如图2,当PQ=PE时,矩形PEFQ为正方形, ∵OQ=t,PA=2t, ∴OP=8﹣2t, ∴QP=t﹣(8﹣2t)=3t﹣8, ∴t=3t﹣8, 解得:t=4; (3)如图1,当Q在P点的左边时, ∵OQ=t,PA=2t, ∴QP=8﹣t﹣2t=8﹣3t, ∴S矩形PEFQ=QP•QF=(8﹣3t)•t=8t﹣3t2, 当t=﹣=时, S矩形PEFQ的最大值为:=4, 如图2,当Q在P点的右边时, ∵OQ=t,PA=2t, ∴QP=t﹣(8﹣2t)=3t﹣8, ∴S矩形PEFQ=QP•QE=(3t﹣8)•t=3t2﹣8t, ∵当点P、Q其中一点停止运动时,另一点也停止运动, ∴0≤t≤4, 当t=﹣=时,S矩形PEFQ的最小, ∴t=4时,S矩形PEFQ的最大值为:3×42﹣8×4=16, 综上所述,当t=4时,S矩形PEFQ的最大值为:16. 6、(2012江苏无锡10分)如图1,A.D分别在x轴和y轴上,CD∥x轴,BC∥y轴.点P从D点出发,以1cm/s的速度,沿五边形OABCD的边匀速运动一周.记顺次连接P、O、D三点所围成图形的面积为Scm2,点P运动的时间为ts.已知S与t之间的函数关系如图2中折线段OEFGHI所示. (1)求A.B两点的坐标; (2)若直线PD将五边形OABCD分成面积相等的两部分,求直线PD的函数关系式. 【答案】解:(1)在图1中,连接AD,设点A的坐标为(a,0), 由图2知,当点P到达点A时, DO+OA=6,即DO=6﹣AO=6﹣a, S△AOD=4, ∴DO•AO=4,即(6﹣a)a=4。 ∴a2﹣6a+8=0,解得a=2或a=4。 由图2知,DO>3,∴AO<3。∴a=2。 ∴A的坐标为(2,0),D点坐标为(0,4)。 在图1中,延长CB交x轴于M,由图2,知AB=11﹣6=5,CB=12﹣11=1。 ∴MB=4﹣1=3。∴。∴OM=2+4=6。 ∴B点坐标为(6,3)。 (2)显然点P一定在AB上.设点P(x,y),连PC.PO,则 S四边形DPBC=S△DPC+S△PBC=S五边形OABCD =(S矩形OMCD﹣S△ABM)=9, ∴×6×(4﹣y)+×1×(6﹣x)=9,即x+6y=12①。 同理,由S四边形DPAO=9可得2x+y=9②。 联立①②,解得x=,y=。∴P(,)。 设直线PD的函数关系式为y=kx+4,将P(,)代入,得=k+4。 解得,k=﹣。 ∴直线PD的函数关系式为y=﹣x+4。 【考点】动点问题,一次函数综合题,矩形的性质,勾股定理,待定系数法,直线上点的坐标与方程的关系。。 (2)设点P(x,y),连PC.PO,得出S四边形DPBC和S四边形DPAO的面积,再进行整理,即可得出x与y的关系,联立求出x、y的值,即可得出P点的坐标。再用待定系数法求出设直线PD的函数关系式。 (第7题) 解:(1)由已知得,FG=AF=2,FB=1。 ∵四边形ABCD为矩形,∴∠B=90°。 ∴。∴G点的坐标为(3,4-)。 (2)设直线EF的解析式是y=kx+b, 在Rt△BFG中,,∴∠BFG=60°。∴∠AFE=∠EFG=60°。 ∴AE=AFtan∠AFE=2tan60°=2。∴E点的坐标为(0,4-2)。 又F点的坐标是(2,4), ∴, 解得。 ∴直线EF的解析式为。 (3)存在。M点的坐标为(),(),( )。 【考点】一次函数综合题,矩形的性质,折叠性质,勾股定理,锐角三角函数定义,特殊角的三角函数值,待定系数法,直线上点的坐标与方程的关系,平行四边形的判定和性质,全等三角形的判定和性质。 【分析】(1)根据折叠性质可知FG=AF=2,而FG=AB-AF=1,则在Rt△BFG中,利用勾股定理求出BG的长,从而得到CG的长,从而得到G点坐标。 (2)由题意,可知△AEF为含30度角的直角三角形,从而可求出E点坐标;又F点坐标已知,所以可利用待定系数法求出直线EF的解析式。 (3)分FG为平行四边形边和对角线两种情况讨论,探究可能的平行四边形的形状: 若以M、N、F、G为顶点的四边形是平行四边形,则可能存在以下情形: ①FG为平行四边形的一边,且N点在x轴正半轴上,如图1所示。 过M1点作M1H⊥x轴于点H,易证△M1HN1≌△GBF, ∴M1H=GB=,即yM1=。 由直线EF解析式,求出。 ∴M1()。 ②FG为平行四边形的一边,且N点在x轴负半轴上,如图2所示。 仿照与①相同的办法,可求得M2()。 ③FG为平行四边形的对角线,如图3所示。 过M3作FB延长线的垂线,垂足为H.易证△M3FH≌△GN3C, 则有M3H=CG=4,所以M3的纵坐标为8-。 代入直线EF解析式,得到M3的横坐标为。 ∴M3()。 综上所述,存在点M,使以M、N、F、G为顶点的四边形是平行四边形,点M的坐标为:M1(),M2(),M3( )。 期末专题一:二次函数综合题 1、(2011•潼南县)如图,在平面直角坐标系中,△ABC是直角三角形,∠ACB=90,AC=BC,OA=1,OC=4,抛物线y=x2+bx+c经过A,B两点,抛物线的顶点为D. (1)求b,c的值; (2)点E是直角三角形ABC斜边AB上一动点(点A、B除外),过点E作x轴的垂线交抛物线于点F,当线段EF的长度最大时,求点E的坐标; (3)在(2)的条件下: ①求以点E、B、F、D为顶点的四边形的面积; ②在抛物线上是否存在一点P,使△EFP是以EF为直角边的直角三角形?若存在,求出所有点P的坐标;若不存在,说明理由. 考点:二次函数综合题。 分析:(1)由∠ACB=90°,AC=BC,OA=1,OC=4,可得A(﹣1,0)B(4,5),然后利用待定系数法即可求得b,c的值; (2)由直线AB经过点A(﹣1,0),B(4,5),即可求得直线AB的解析式,又由二次函数y=x2﹣2x﹣3,设点E(t,t+1),则可得点F的坐标,则可求得EF的最大值,求得点E的坐标; (3)①顺次连接点E、B、F、D得四边形EBFD,可求出点F的坐标(,),点D的坐标为(1,﹣4)由S四边形EBFD=S△BEF+S△DEF即可求得; ②过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3),可得m2﹣2m﹣2=,即可求得点P的坐标,又由过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3),可得n2﹣2n﹣2=﹣,求得点P的坐标,则可得使△EFP是以EF为直角边的直角三角形的P的坐标. 解答:解:(1)由已知得:A(﹣1,0),B(4,5), ∵二次函数y=x2+bx+c的图象经过点A(﹣1,0),B(4,5), ∴, 解得:b=﹣2,c=﹣3; (2)如图:∵直线AB经过点A(﹣1,0),B(4,5), ∴直线AB的解析式为:y=x+1, ∵二次函数y=x2﹣2x﹣3, ∴设点E(t,t+1),则F(t,t2﹣2t﹣3), ∴EF=(t+1)﹣(t2﹣2t﹣3)=﹣(t﹣)2+, ∴当t=时,EF的最大值为, ∴点E的坐标为(,); (3)①如图:顺次连接点E、B、F、D得四边形EBFD. 可求出点F的坐标(,),点D的坐标为(1,﹣4) S四边形EBFD=S△BEF+S△DEF=××(4﹣)+××(﹣1)=; ②如图: ⅰ)过点E作a⊥EF交抛物线于点P,设点P(m,m2﹣2m﹣3) 则有:m2﹣2m﹣2=, 解得:m1=,m2=, ∴P1(,),P2(,), ⅱ)过点F作b⊥EF交抛物线于P3,设P3(n,n2﹣2n﹣3) 则有:n2﹣2n﹣2=﹣, 解得:n1=,n2=(与点F重合,舍去), ∴P3(,), 综上所述:所有点P的坐标:P1(,),P2(,),P3(,)能使△EFP组成以EF为直角边的直角三角形. 2、(12分)如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C. (1) 求抛物线的解析式; (2) 设抛物线的对称轴与轴交于点M ,问在对称轴上是否存在点P,使△CMP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由. (3) 如图②,若点E为第二象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标. 解: (1)由题知: ……………………………………1 分 解得: ……………………………………………………………2分 ∴ 所求抛物线解析式为: ……………………………3分 (2) 存在符合条件的点P, 其坐标为P (-1, )或P(-1,- ) 或P (-1, 6) 或P (-1, )………………………………………………………7分 (3)解法①: 过点E 作EF⊥x 轴于点F , 设E ( a ,--2a+3 )( -3< a < 0 ) ∴EF=--2a+3,BF=a+3,OF=-a …………………………………………8 分 ∴S四边形BOCE = BF·EF + (OC +EF)·OF =( a+3 )·(--2a+3) + (--2a+6)·(-a)……………………9 分 =………………………………………………………………10 分 =-+ ∴ 当a =-时,S四边形BOCE 最大, 且最大值为 .…………………………11 分 此时,点E 坐标为 (-,)……………………………………………………12分 解法②: 过点E 作EF⊥x 轴于点F, 设E ( x , y ) ( -3< x < 0 ) …………………………8分 则S四边形BOCE = (3 + y )·(-x) + ( 3 + x )·y ………………………………………9分 = ( y-x)= ( ) …………………………………10 分 = - + ∴ 当x =-时,S四边形BOCE 最大,且最大值为 . …………………………11分 此时,点E 坐标为 (-,) ……………………… 3、(15分)已知抛物线顶点为C(1,1)且过原点O.过抛物线上一点P(x,y)向直线作垂线,垂足为M,连FM(如图). (1)求字母a,b,c的值; (2)在直线x=1上有一点,求以PM为底边的等腰三角形PFM的P点的坐标,并证明此时△PFM为正三角形; (3)对抛物线上任意一点P,是否总存在一点N(1,t),使PM=PN恒成立,若存在请求出t值,若不存在请说明理由. 解:(1)a=-1,b=2,c=0 (2)过P作直线x=1的垂线,可求P的纵坐标为,横坐标为.此时,MP=MF=PF=1,故△MPF为正三角形. (3)不存在.因为当t<,x<1时,PM与PN不可能相等,同理,当t>,x>1时,PM与PN不可能相等. 4、如图(十二)直线l的解析式为y=-x+4, 它与x轴、y轴分相交于A、B两点,平行于直线l的直线m从原点O出发,沿x轴的正方向以每秒1个单位长度的速度运动,它与x轴、y轴分别相交于M、N两点,运动时间为t秒(0<t≤4)  (1)求A、B两点的坐标;  (2)用含t的代数式表示△MON的面积S1;  (3)以MN为对角线作矩形OMPN,记 △MPN和△OAB重合部分的面积为S2 ;    当2<t≤4时,试探究S2 与之间的函数关系; x y l m O A M N B P x y l m O A M N B P E F 图十二    ‚在直线m的运动过程中,当t为何值时,S2 为△OAB的面积的?               解:(1)当时,;当时,.; 2分 (2),; 4分 (3)①当时,易知点在的外面,则点的坐标为, 点的坐标满足即, 同理,则, 6分 所以 ; 8分 ②当时,, 解得两个都不合题意,舍去; 10分 当时,,解得, 综上得,当或时,为的面积的. 12分 - 21 -
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服