资源描述
第一辑 函数图象中点的存在性问题
第一辑
第 2 页
第一辑 函数图象中点的存在性问题
§1.1 因动点产生的相似三角形问题
①2014年湖南省衡阳市中考第28题
二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A(-3, 0)、B(1, 0)两点,与y轴交于点C(0,-3m)(m>0),顶点为D.
(1)求该二次函数的解析式(系数用含m的代数式表示);
(2)如图1,当m=2时,点P为第三象限内抛物线上的一个动点,设△APC的面积为S,试求出S与点P的横坐标x之间的函数关系式及S的最大值;
(3)如图2,当m取何值时,以A、D、C三点为顶点的三角形与△OBC相似?
图1 图2
② 2014年湖南省益阳市中考第21题
如图1,在直角梯形ABCD中,AB//CD,AD⊥AB,∠B=60°,AB=10,BC=4,点P沿线段AB从点A向点B运动,设AP=x.2·1·c·n·j·y
(1)求AD的长;
(2)点P在运动过程中,是否存在以A、P、D为顶点的三角形与以P、C、B为顶点的三角形相似?若存在,求出x的值;若不存在,请说明理由;
(3)设△ADP与△PCB的外接圆的面积分别为S1、S2,若S=S1+S2,求S的最小值.
图1
③2015年湖南省湘西市中考第26题
如图1,已知直线y=-x+3与x轴、y轴分别交于A、B两点,抛物线y=-x2+bx+c经过A、B两点,点P在线段OA上,从点O出发,向点A以每秒1个单位的速度匀速运动;同时,点Q在线段AB上,从点A出发,向点B以每秒个单位的速度匀速运动,连结PQ,设运动时间为t秒.
(1)求抛物线的解析式;
(2)问:当t为何值时,△APQ为直角三角形;
(3)过点P作PE//y轴,交AB于点E,过点Q作QF//y轴,交抛物线于点F,连结EF,当EF//PQ时,求点F的坐标;
(4)设抛物线顶点为M,连结BP、BM、MQ,问:是否存在t的值,使以B、Q、M为顶点的三角形与以O、B、P为顶点的三角形相似?若存在,请求出t的值;若不存在,请说明理由. 图1
§1.2 因动点产生的等腰三角形问题
① 2014年长沙市中考第26题
如图1,抛物线y=ax2+bx+c(a、b、c是常数,a≠0)的对称轴为y轴,且经过(0,0)和两点,点P在该抛物线上运动,以点P为圆心的⊙P总经过定点A(0, 2).
(1)求a、b、c的值;
(2)求证:在点P运动的过程中,⊙P始终与x轴相交;
(3)设⊙P与x轴相交于M(x1, 0)、N(x2, 0)两点,当△AMN为等腰三角形时,求圆心P的纵坐标.
图1
② 2014年湖南省张家界市中考第25题
如图1,在平面直角坐标系中,O为坐标原点,抛物线y=ax2+bx+c(a≠0)过O、B、C三点,B、C坐标分别为(10, 0)和,以OB为直径的⊙A经过C点,直线l垂直x轴于B点.
(1)求直线BC的解析式;
(2)求抛物线解析式及顶点坐标;
(3)点M是⊙A上一动点(不同于O、B),过点M作⊙A的切线,交y轴于点E,交直线l于点F,设线段ME长为m,MF长为n,请猜想mn的值,并证明你的结论;
(4)若点P从O出发,以每秒1个单位的速度向点B作直线运动,点Q同时从B出发,以相同速度向点C作直线运动,经过t(0<t≤8)秒时恰好使△BPQ为等腰三角形,请求出满足条件的t值.
图 图1
③2014年湖南省邵阳市中考第26题
在平面直角坐标系中,抛物线y=x2-(m+n)x+mn(m>n)与x轴相交于A、B两点(点A位于点B的右侧),与y轴相交于点C.
(1)若m=2,n=1,求A、B两点的坐标;
(2)若A、B两点分别位于y轴的两侧,C点坐标是(0,-1),求∠ACB的大小;
(3)若m=2,△ABC是等腰三角形,求n的值.
④2014年湖南省娄底市中考第27题
如图1,在△ABC中,∠ACB=90°,AC=4cm,BC=3cm.如果点P由点B出发沿BA方向向点A匀速运动,同时点Q由点A出发沿AC方向向点C匀速运动,它们的速度均为1cm/s.连结PQ,设运动时间为t(s)(0<t<4),解答下列问题:
(1)设△APQ的面积为S,当t为何值时,S取得最大值?S的最大值是多少?
(2)如图2,连结PC,将△PQC沿QC翻折,得到四边形PQP′C,当四边形PQP′C为菱形时,求t的值;
(3)当t为何值时,△APQ是等腰三角形?
图1 图2
⑤2015年湖南省怀化市中考第22题
如图1,已知Rt△ABC中,∠C=90°,AC=8,BC=6,点P以每秒1个单位的速度从A向C运动,同时点Q以每秒2个单位的速度从A→B→C方向运动,它们到C点后都停止运动,设点P、Q运动的时间为t秒.
(1)在运动过程中,求P、Q两点间距离的最大值;
(2)经过t秒的运动,求△ABC被直线PQ扫过的面积S与时间t的函数关系式;
(3)P,Q两点在运动过程中,是否存在时间t,使得△PQC为等腰三角形.若存在,求出此时的t值,若不存在,请说明理由.(,结果保留一位小数)
图1
§1.3 因动点产生的直角三角形问题
①2015年湖南省益阳市中考第21题
如图1,已知抛物线E1:y=x2经过点A(1,m),以原点为顶点的抛物线E2经过点B(2,2),点A、B关于y 轴的对称点分别为点A′、B′.
(1)求m的值及抛物线E2所表示的二次函数的表达式;
(2)如图1,在第一象限内,抛物线E1上是否存在点Q,使得以点Q、B、B′为顶点的三角形为直角三角形?若存在,求出点Q的坐标;若不存在,请说明理由;
(3)如图2,P为第一象限内的抛物线E1上与点A不重合的一点,连结OP并延长与抛物线E2相交于点P′,求△PAA′与△P′BB′的面积之比.
图1 图2
②2015年湖南省湘潭市中考第26题
如图1,二次函数y=x2+bx+c的图象与x轴交于A(-1, 0)、B(3, 0)两点,与y轴交于点C,连结BC.动点P以每秒1个单位长度的速度从点A向点B运动,动点Q以每秒个单位长度的速度从点B向点C运动,P、Q两点同时出发,连结PQ,当点Q到达点C时,P、Q两点同时停止运动.设运动的时间为t秒.
(1)求二次函数的解析式;
(2)如图1,当△BPQ为直角三角形时,求t的值;
(3)如图2,当t<2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点,若存在,求出点N的坐标与t的值;若不存在,请说明理由.
图1 图2
§1.4 因动点产生的平行四边形问题
① 2014年湖南省岳阳市中考第24题
如图1,抛物线经过A(1, 0)、B(5, 0)、C三点.设点E(x, y)是抛物线上一动点,且在x轴下方,四边形OEBF是以OB为对角线的平行四边形.
(1)求抛物线的解析式;
(2)当点E(x, y)运动时,试求平行四边形OEBF的面积S与x之间的函数关系式,并求出面积S的最大值;
(3)是否存在这样的点E,使平行四边形OEBF为正方形?若存在,求点E、F的坐标;若不存在,请说明理由.
图图1
②2014年湖南省益阳市中考第20题
如图1,直线y=-3x+3与x轴、y轴分别交于点A、B,抛物线y=a(x-2)2+k经过A、B两点,并与x轴交于另一点C,其顶点为P.
(1)求a,k的值;
(2)抛物线的对称轴上有一点Q,使△ABQ是以AB为底边的等腰三角形,求点Q的坐标;
(3)在抛物线及其对称轴上分别取点M、N,使以A、C、M、N为顶点的四边形为正方形,求此正方形的边长.】
图1
①2014年湖南省邵阳市中考第25题
准备一张矩形纸片(如图1),按如图2操作:
将△ABE沿BE翻折,使点A落在对角线BD上的点M,将△CDF沿DF翻折,使点C落在对角线BD上的点N.
(1)求证:四边形BFDE是平行四边形;
(2)若四边形BFDE是菱形,AB=2,求菱形BFDE的面积.
图1 图2
§1.5 因动点产生的面积问题
①2014年湖南省常德市中考第25题
如图1,已知二次函数的图象过点O(0,0)、A(4,0)、B(),M是OA的中点.
(1)求此二次函数的解析式;
(2)设P是抛物线上的一点,过P作x轴的平行线与抛物线交于另一点Q,要使四边形PQAM是菱形,求点P的坐标;
(3)将抛物线在轴下方的部分沿轴向上翻折,得曲线OB′A(B′为B关于x轴的对称点),在原抛物线x轴的上方部分取一点C,连结CM,CM与翻折后的曲线OB′A交于点D,若△CDA的面积是△MDA面积的2倍,这样的点C是否存在?若存在求出点C的坐标;若不存在,请说明理由.
图1
②2014年湖南省永州市中考第25题
如图1,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-1, 0),B(4, 0)两点,与y轴交于点C(0, 2).点M(m, n)是抛物线上一动点,位于对称轴的左侧,并且不在坐标轴上.过点M作x轴的平行线交y轴于点Q,交抛物线于另一点E,直线BM交y轴于点F.
(1)求抛物线的解析式,并写出其顶点坐标;
(2)当S△MFQ∶S△MEB=1∶3时,求点M的坐标.
图1
§1.6 因动点产生的相切问题
①2014年湖南省衡阳市中考第27题
如图1,直线AB与x轴交于点A(-4, 0),与y轴交于点B(0, 3).点P从点A出发,以每秒1个单位长度的速度沿直线AB向点B移动.同时将直线以每秒0.6个单位长度的速度向上平移,交OA于点C,交OB于点D,设运动时间为t(0<t<5)秒.
(1)证明:在运动过程中,四边形ACDP总是平行四边形;
(2)当t取何值时,四边形ACDP为菱形?请指出此时以点D为圆心、OD长为半径的圆与直线AB的位置关系并说明理由.
图1
②2014年湖南省株洲市中考第23题
如图1,PQ为圆O的直径,点B在线段PQ的延长线上,OQ=QB=1,动点A在圆O的上半圆上运动(包含P、Q两点),以线段AB为边向上作等边三角形ABC.
(1)当线段AB所在的直线与圆O相切时,求△ABC的面积(如图1);
(2)设∠AOB=,当线段AB与圆O只有一个公共点(即A点)时,求的范围(如图2,直接写出答案);
(3)当线段AB与圆O有两个公共点A、M时,如果AO⊥PM于点N,求CM的长(如图3).
图1 图2 图3
§1.7 因动点产生的线段和差问题
①2014年湖南省郴州市中考第26题
已知抛物线y=ax2+bx+c经过A(-1, 0)、B(2, 0)、C(0, 2)三点.
(1)求这条抛物线的解析式;
(2)如图1,点P是第一象限内此抛物线上的一个动点,当点P运动到什么位置时,四边形ABPC的面积最大?求出此时点P的坐标;
(3)如图2,设线段AC的垂直平分线交x轴于点E,垂足为D,M为抛物线的顶点,那么在直线DE上是否存在一点G,使△CMG的周长最小?若存在,请求出点G的坐标;若不存在,请说明理由.
图1 图2
②2014年湖南省湘西州中考第25题
如图1,抛物线y=ax2+bx+c关于y轴对称,它的顶点在坐标原点O,点B和点C(-3,-3)均在抛物线上,点F在y轴上,过点作直线l与x轴平行.
(1)求抛物线的解析式和直线BC的解析式;
(2)设点D(x, y)是线段BC上的一个动点(点D不与B、C重合),过点D作x轴的垂线,与抛物线交于点G,设线段GD的长为h,求h与x之间的函数关系式,并求出当x为何值时,线段GD的长度h最大,最大长度h的值是多少?
(3)若点P(m, n)是抛物线上位于第三象限的一个动点,连结PF并延长,交抛物线于另一点Q,过点Q作QS⊥l,垂足为S,过点P作PN⊥l,垂足为N,试判断△FNS的形状,并说明理由;
(4)若点A(-2, t)在线段BC上,点M为抛物线上的一个动点,连结AF,当点M在何位置时,MF+MA的值最小.请直接写出此时点M的坐标与MF+MA的最小值.
图1
第 16 页
展开阅读全文