收藏 分销(赏)

甘肃省天水成功高考学校高三数学第一次月考试题-文-新人教A版.doc

上传人:仙人****88 文档编号:6559018 上传时间:2024-12-13 格式:DOC 页数:11 大小:519KB
下载 相关 举报
甘肃省天水成功高考学校高三数学第一次月考试题-文-新人教A版.doc_第1页
第1页 / 共11页
甘肃省天水成功高考学校高三数学第一次月考试题-文-新人教A版.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
天水成功高考学校2013年第一次月考数学试题(文科) 命题教师:薛铮 甘肃天水成功高考学校数学教研室 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于 ( ) A.{2} B.{1,2} C.{2,3} D.{1,2,3} 2.设集合则集合的子集个数为 ( ) A.1 B.2 C.3 D.4 3.设集合,则满足的集合B的个数为 (   ) A.1 B.3 C.4 D.8 4.函数的定义域是 ( ) A. B. C. D. 5.设 ( ) A.0 B.1 C.2 D.3 6.下列命题中的假命题是 ( ) A.R B.N C.R,lg D.R,tan 7.已知函数,且不等式的解集为,则函数的图象为 ( ) 8.下列函数中,在定义域内满足”当时,都有”的是 ( ) A. B. C. D. 9.函数在其定义域内 ( ) A.是增函数又是偶函数 B.是增函数又是奇函数 C.是减函数又是偶函数 D.是减函数又是奇函数 10.函数的递增区间是 ( ) A. B. C. D. 11.用表示三个数中的最小值.设,则的最大值为 ( ) A. 4 B. 5 C. 6 D. 7 12.已知函数,则的解集为 ( ) A.(-∞,-1)∪(1,+∞) B. [-1,-)∪(0,1] C.(-∞,0)∪(1,+∞) D. [-1,-]∪(0,1) 二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. 13.已知集合|,若,则实数m的取值范围是 ___________. 14.定义在R上的偶函数满足且在[-1,0]上单调递增,若则的大小关系为_________. 15. 定义:区间(x的长度为.已知函数y=2|x|的定义域为,值域为[0,2]则区间的长度的最大值与最小值的差为 . 16.有下列命题: ①命题“,使得”的否定是“,都有”; ②设p、q为简单命题,若“”为假命题,则“为真命题”; ③若则“R,p(x)是真命题”的充要条件为 a>1; ④若函数为R上的奇函数,当则=一14; ⑤不等式的解集是 。其中所有正确的说法序号是_____________. 三.解答题:本大题共5个小题,满分60分. 解答应写出文字说明、证明过程或演算步骤. 17.建造一个容积为16立方米,深为4米的无盖长方体蓄水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,问怎样设计才能使该蓄水池的总造价最低,最低造价为多少? 18.已知不等式的解集为{x|x<1或x>b}. (1)求a,b; (2)解不等式bc<0. 19.已知函数RR). 若a=1,c=0,且|f(x)|在区间(0,1]上恒成立,试求b的取值范围. 20.已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意的R,不等式0恒成立,求k的取值范围. 21.已知为实数,函数. (1) 若,求函数在[-1,1]上的最大值和最小值; (2)若函数的图象上有与轴平行的切线,求的取值范围. 四 选做题(请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分,本小题满分10分) 22.设函数. (I)解不等式; (II)求函数的最小值. 23. 设函数,其中。 (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为 ,求a的值。 24.选修参数方程:已知点P是圆上的动点, (1)求的取值范围; (2)若恒成立,求实数的取值范围. 天水成功高考学校2013年第一次月考数学试题(文科)参考答案 一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 A D C B C B B D B A C B 二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中的横线上。 13. 14. 15.1 16. ①②③④ 一、选择题:本大题共12小题,每小题5分,共60分. 在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知集合P={x∈N|1≤x≤10},集合Q={x∈R|x2+x-6=0},则P∩Q等于( ) A.{2} B.{1,2} C.{2,3} D.{1,2,3} 【解析】选A . P={1,2,3,4,5,6,7,8,9,10},Q={-3,2},P∩Q={2}. 2.设集合则集合的子集个数为 ( )D A.1 B.2 C.3 D.4 3.设集合,则满足的集合B的个数为 (   )C A.1 B.3 C.4 D.8 【解析】选C.根据题意,集合B含有元素3且是集合{1,2,3}的子集,可以为{3},{3,1},{3,2},{3,1,2}. 4.函数的定义域是( )B A. B. C. D. 5.设 ( ) C A.0 B.1 C.2 D.3 6.下列命题中的假命题是( ) A.R B.N C.R,lg D.R,tan 解析:对于B选项,当x=1时故选B. 7.已知函数,且不等式的解集为,则函数的图象为( ) B 8.下列函数中,在其定义域内满足”对任意当时,都有”的是 ( D ) A. B. C. D. 9.函数在其定义域内( ) A.是增函数又是偶函数 B.是增函数又是奇函数 C.是减函数又是偶函数 D.是减函数又是奇函数 答案:B 解析:因为f故f(x)是奇函数. 又可见f(x)是增函数,所以应选B. 10.函数的递增区间是( )A A. B. C. D. 11.用表示三个数中的最小值.设,则的最大值为( C ) A. 4 B. 5 C. 6 D. 7 12.已知函数,则的解集为( B ) A.(-∞,-1)∪(1,+∞) B. [-1,-)∪(0,1] C.(-∞,0)∪(1,+∞) D. [-1,-]∪(0,1) 二、填空题:本大题共4小题,每小题5分,共20分,把答案填写在题中横线上. 13.已知集合|,若,则实数m的取值范围是 14. .定义在R上的偶函数满足且在[-1,0]上单调递增,若则的大小关系为_________. 15. 定义:区间x(x的长度为.已知函数y=2|x|的定义域为,值域为[0,2]则区间的长度的最大值与最小值的差为 . 答案:1 解析:的长度取得最大值时=[-1,1],区间的长度取得最小值时可取[0,1]或[-1,0],因此区间的长度的最大值与最小值的差为1. 16.有下列命题: ①命题“,使得”的否定是“,都有”; ②设p、q为简单命题,若“”为假命题,则“为真命题”; ③若则“R,p(x)是真命题”的充要条件为 a>1; ④若函数为R上的奇函数,当则=-14; ⑤不等式的解集是 其中所有正确的说法序号是_①②③④_______; 解析:当a=0时,不等式变为2x+1>0,对R,p(x)不是真命题;当a>0时,应有解得a>1;当a<0时,对R,p(x)不是真命题.综上得,a的取值范围是a>1. 三.解答题:本大题共5个小题,满分60分. 解答应写出文字说明、证明过程或演算步骤. 17.建造一个容积为16立方米,深为4米的无盖长方体蓄水池,池壁的造价为每平方米100元,池底的造价为每平方米200元,问怎样设计才能使该蓄水池的总造价最低,最低造价为多少? 解:设池底一边为米,则另一边为米,总造价为元 ,当即时,元. 答:池底为边长为2米的正方形时,总造价最低为4000元. 18.已知不等式的解集为{x|x<1或x>b}. (1)求a,b; (2)解不等式bc<0. 解:(1)因为不等式的解集为{x|x<1或x>b},所以x=1与x=b是方程3x+2=0的两个实数根,且b>1.由根与系数的关系,得 解得 所以 (2)原不等式bc<0, 可化为2c<0,即(x-2)(x-c)<0. ①当c>2时,不等式(x-2)(x-c)<0的解集为{x|2<x<c}; ②当c<2时,不等式(x-2)(x-c)<0的解集为{x|c<x<2}; ③当c=2时,不等式(x-2)(x-c)<0的解集为. 综上所述:当c>2时,不等式bc<0的解集为{x|2<x<c}; 当c<2时,不等式bc<0的解集为{x|c<x<2}; 当c=2时,不等式bc<0的解集为. 19.已知函数RR). 若a=1,c=0,且|f(x)|在区间(0,1]上恒成立,试求b的取值范围. 解:由题知原命题等价于在上恒成立,即b且在]上恒成立, 根据单调性可得的最小值为0, 的最大值为-2, ∴ 20.已知定义域为R的函数是奇函数. (1)求a,b的值; (2)若对任意的R,不等式0恒成立,求k的取值范围. 解:(1)∵f(x)是奇函数,∴f(0)=0,即.∴. 又由f(1)=-f(-1),知a=2. (2)由(1)知易知f(x)在上为减函数. 又因f(x)是奇函数, 从而不等式k)<0等价于f(k- 因f(x)为减函数,由上式推得: 即对一切R有 . 从而判别式. 21.已知为实数,函数. (1) 若,求函数在[-1,1]上的最大值和最小值; (2)若函数的图象上有与轴平行的切线,求的取值范围. 略解:(1),………..2分 。。。。。。通过列表讨论得:………6分 (2)…….4分 四 选做题(请考生在第22、23、24三题中任选一题做答,如果多做,则按所做的第一题记分) 22.(本小题满分10分)选修;不等式选讲 设函数. (I)解不等式; (II)求函数的最小值. 【解析】 (Ⅰ)令,则 ...............3分 作出函数的图象,它与直线的交点为和. 所以的解集为. (Ⅱ)由函数的图像可知, 当时,取得最小值. 23. (本小题满分10分)选修4-5:不等式选讲 设函数,其中。 (Ⅰ)当时,求不等式的解集; (Ⅱ)若不等式的解集为 ,求a的值。 解:(Ⅰ)当时,可化为。由此可得 或。 故不等式的解集为或。 ( Ⅱ) 由 得 此不等式化为不等式组 或即 或 因为,所以不等式组的解集为 由题设可得= ,故 24. (本小题满分10分)选修4-5:参数方程 已知点P是圆上的动点,(1)求的取值范围;(2)若恒成立,求实数的取值范围. 解:利用三角换元 (1) (2) 11 用心 爱心 专心
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服