资源描述
求一个小数的近似数
子君中学心校
罗端
一、教学内容:
求一个小数的近似数.(教材第53页例1及“做一做”,练习十二第1、2题.)
二、教学要求:
1.使学生掌握求一个小数的近似数的方法.
2.能正确地用“四舍五人法”求近似数.
3.使学生理解保留小数位数越多,精确程度越高.
三、教学重点:
使学生理解取近似值对结果的精确程度的影响.
四:教学难点
理解保留小数位数越多,精确程度越高.
五、教学准备:
多媒体课件.
六、教学过程
第一课时
一、情境导入:
1、把下面各数省略万或亿后面的尾数,求出它们的近似数。
986500≈( 99 )万
738700000≈( 7 )亿
2、下面的□里可以填上哪些数字?
32□645≈32万 (0—4)
32□645≈33万 (5—9)
舍还是入关键看指定数位右边第一位
二、自主探究:
1.揭示课题:求一个小数的近似数.
2.在实际生活中应用小数的时候,有时没有必要说出它的准确数,只需要一个小数的近似数.
3.课件出示例1.
豆豆身高0.984米,平常没有必要说的那么准确,只要说出它的近似数就够了,怎样求小数的近似数呢?
0.984米保留两位小数、一位小数、保留整数分别是多少呢?
(1)学生独立练习.
(2)小组内交流.
(3)全班交流.
0.984≈0.98 (保留了两位小数) (4﹤5 舍去)
0. 9 8 4≈1 (保留了整数)(9﹥5 向前一位进1)
精确度——精确到什么程度或什么位置。
如:0.98是精确到百分位;
1是精确到个位。
0. 9 8 4≈1.0 (保留一位小数)(8﹥5 向前一位进1, 而9满十再进一)
汇总: 0.984取近似数
保留整数
保留一位小数
保留两位小数
写作
1
1.0
0.98
精确到
个位
十分位
百分位
求近似数时,保留整数,表示精确到个位; 保留一位小数,表示精确到十分位; 保留两位小数,表示精确到百分位……
小数取近似数的方法同整数求近似数方法一样:
找到指定数位。 (2)舍还是入关键看指定数位右边第一位。
4.1与1.0有没有区别?
(大小相同,意义不同,计数单位不同,精确度也不同)
近似数是1的准确数在0.5—1.4之间;而近似数是1.0的准确数在0.95—1.09之间 。
精确到的数位越低越准确。
注意:这里的0起到“占位以便表示精确度”的作用。因此,近似数末尾的0不能去掉。
三、练一练:
(1)求一个小数的近似数,要根据( )法来保留小数的数位。保留整数时,表示精确到( )位;保留一位小数时;精确到( )位,保留两位小数时,精确到( )位.....
(2)近似数的结果一般的说6.0比6精确,因为6.0精确到了( ),6精确到了( )位,所以6.0的末尾中的”0”不能去掉。
四.课堂小结,质疑:
1、小数取近似数的方法同整数求近似数方法一样:
(1)找到指定数位。
(2)舍还是入关键看指定数位右边第一位。
(保留整数,就看十分位是几;要保留一位小数,就看百分位是几;……然后按“四舍五入法”决定是舍还是入)
2、近似数末尾的0不能去掉。
3、保留、精确与省略间的对应关系。
4、取值范围问题。
5.阅读教材第53页.
五、实践应用:
1.第53页“做一做”.
学生独立练习,说一说你是怎样想的,形成程序性思维.
2.练习十二第1题.
学生独立填表,全班测评,看看教学效果.
3.课堂作业:练习十二第2题.
展开阅读全文