收藏 分销(赏)

七年级数学教案集.doc

上传人:pc****0 文档编号:6530219 上传时间:2024-12-11 格式:DOC 页数:115 大小:603KB
下载 相关 举报
七年级数学教案集.doc_第1页
第1页 / 共115页
七年级数学教案集.doc_第2页
第2页 / 共115页
七年级数学教案集.doc_第3页
第3页 / 共115页
七年级数学教案集.doc_第4页
第4页 / 共115页
七年级数学教案集.doc_第5页
第5页 / 共115页
点击查看更多>>
资源描述

1、 七年级数学教案集 作者:徐月雄 文章来源:本站原创 点击数:1340 更新时间:2005-4-7 第十四课时 一、课题 2.1数怎么不够用了(1) 二、教学目标 1使学生了解正数与负数是从实际需要中产生的; 2使学生理解正数与负数的概念,并会判断一个数是正数还是负数; 3初步会用正负数表示具有相反意义的量; 4在负数概念的形成过程中,培养学生的观察、归纳与概括的能力 三、教学重点和难点 重点难点 负数的意义负数的意义 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有的认知结构提出问题 大家知道,数学与数是分不开的,它是一门研究数的学问现在我们一起来回

2、忆一下,小学里已经学过哪些类型的数? 学生答后,教师指出:小学里学过的数可以分为三类:自然数(正整数)、分数和零(小数包括在分数之中),它们都是由于实际需要而产生的 为了表示一个人、两只手、,我们用到整数1,2, 4.87、 为了表示“没有人”、“没有羊”、,我们要用到0 但在实际生活中,还有许多量不能用上述所说的自然数,零或分数、小数表示 (二)、师生共同研究形成正负数概念 某市某一天的最高温度是零上5,最低温度是零下5要表示这两个温度,如果只用小学学过的数,都记作5,就不能把它们区别清楚它们是具有相反意义的两个量 现实生活中,像这样的相反意义的量还有很多 例如,珠穆朗玛峰高于海平面8848

3、米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的 和“运出”,其意义是相反的 同学们能举例子吗? 学生回答后,教师提出:怎样区别相反意义的量才好呢? 待学生思考后,请学生回答、评议、补充 教师小结:同学们成了发明家甲同学说,用不同颜色来区分,比如,红色5表示零下5,黑色5表示零上5;乙同学说,在数字前面加不同符号来区分,比如,5表示零上5,5表示零下5其实,中国古代数学家就曾经采用不同的颜色来区分,古时叫做“正算黑,负算赤”如今这种方法在记账的时候还使用所谓“赤字”,就是这样来的 现在,数学中采用符号来区分,规定零上5记作+5(读作正5)或5,把零下5记作-5(读作负5)这样

4、,只要在小学里学过的数前面加上“+”或“-”号,就把两个相反意义的量简明地表示出来了 让学生用同样的方法表示出前面例子中具有相反意义的量: 高于海平面8848米,记作+8848米;低于海平面155米,记作-155米; 教师讲解:什么叫做正数?什么叫做负数?强调,数0既不是正数,也不是负数,它是正、负数的界限,表示“基准”的数,零不是表示“没有”,它表示一个实际存在的数量并指出,正数,负数的“+”“-”的符号是表示性质相反的量,符号写在数字前面,这种符号叫做性质符号 三、运用举例 变式练习 例 所有的正数组成正数集合,所有的负数组成负数集合把下列各数中的正数和负数分别填在表示正数集合和负数集合的

5、圈里: 此例由学生口答,教师板书,注意加上省略号,说明这是因为正(负)数集合中包含所有正(负)数,而我们这里只填了其中一部分然后,指出不仅可以用圈表示集合,也可以用大括号表示集合 课堂练习 任意写出6个正数与6个负数,并分别把它们填入相应的大括号里: 正数集合: , 负数集合: (四)、小结 由于实际生活中存在着许多具有相反意义的量,因此产生了正数与负数正数是大于0的数,负数就是在正数前面加上“-”号的数0既不是正数,也不是负数,0可以表示没有,也可以表示一个实际存在的数量,如0 七、练习设计 1北京一月份的日平均气温大约是零下3,用负数表示这个温度 2在小学地理图册的世界地形图上,可以看到亚

6、洲西部地中海旁有一个死海湖,图中标着-392,这表明死海的湖面与海平面相比的高度是怎样的? 3在下列各数中,哪些是正数?哪些是负数? -3.6,-4,9651,-0.1 4如果-50元表示支出50元,那么+200元表示什么? 5河道中的水位比正常水位低0.2米记作-0.2米,那么比正常水位高0.1米记作什么? 6如果自行车车条的长度比标准长度长2毫米记作+2毫米,那么比标准长度短3毫米记作什么? 7一物体可以左右移动,设向右为正,问: (1)向左移动12米应记作什么?(2)“记作8米”表明什么? 八、板书设计 21数怎么不够用了(1) (一)知识回顾 (四)例题解析 (六)课堂小结 (二)观察

7、发现 例1、例2 (三)解方程 (五)课堂练习 练习设计 九、教学后记 这节课是在小学里学过的数的基础上,从表示具有相反意义的量引进负数的 从内容上讲,负数比非负数要抽象、难理解因此学生通过这节课只能对负数概念有初步的理解,使学生掌握正负数的记法和它的描述性定义,要求不能过高对有理数的深入理解将在以后的学习中逐步加强 在教学方法和教学语言的选择上,尽可能注意中小学的衔接,既不违反科学性,又符合可接受性原则,教师在课堂上要起好主导作用,并让学生有充分的活动机会,使得课堂气氛有新鲜感所以这节课采取了在教师的启发引导下,师生共同探究解决的途径,以谈话法为主同时,教师的语言要尽量儿童化 第十五课时 一

8、、课题 2.1数怎么不够用了(2) 二、教学目标 1使学生理解有理数的意义,并能将给出的有理数进行分类; 2培养学生树立分类讨论的思想 三、教学重点和难点 重点难点 有理数包括哪些数有理数的分类及其分类的标准 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有的认知结构提出问题 1什么是正、负数? 2如何用正、负数表示具有相反意义的量?数0表示量的意义是什么?举例说明 3任何一个正数都比0大吗?任何一个负数都比0小吗? 4什么是整数?什么是分数? 根据学生的回答引出新课 (二)、讲授新课 1给出新的整数、分数概念 引进负数后,数的范围扩大了过去我们说整数

9、只包括自然数和零,引进负数后,我们把自然数叫做正整数,自然数前加上负号的数叫做负整数,因而整数包括正整数(自然数)、负整数和零,同样分数包括正分数、负分数,即 2给出有理数概念 整数和分数统称为有理数,即 有理数是英语“Rational number”的译名,更确切的译名应译作“比 3有理数的分类 为了便于研究某些问题,常常需要将有理数进行分类,需要不同,分类的方法也常常不同根据有理数的定义可将有理数分成两类:整数和分数有理数还有没有其他的分类方法? 待学生思考后,请学生回答、评议、补充 教师小结:按有理数的符号分为三类:正有理数、负有理数和零,简称正数、负数和零,即 并指出,在有理数范围内,

10、正数和零统称为非负数并向学生强调:分类可以根据不同需要,用不同的分类标准,但必须对讨论对象不重不漏地分类 (三)、运用举例 变式练习 例1 将下列数按上述两种标准分类: 例2 下列各数是正数还是负数,是整数还是分数: 课堂练习 25,-100按两种标准分类 2下列各数是正数还是负数,是整数还是分数? (四)、小结 教师引导学生回答如下问题:本节课学习了哪些基本内容?学习了什么数学思想方法?应注意什么问题? 七、练习设计 1把下列各数填在相应的括号里(将各数用逗号分开): 正整数集合: ; 负整数集合: ; 正分数集合: ; 负分数集合: 2填空题: 的数是_,在分数集合里的数是_; (2)整数

11、和分数合起来叫做_,正分数和负分数合起来叫做_ 3选择题 (1)-100不是 A有理数 B自然数 C整数 D负有理数 (2)在以下说法中,正确的是 A非负有理数就是正有理数 B零表示没有,不是有理数 C正整数和负整数统称为整数 D整数和分数统称为有理数 八、板书设计 21数怎么不够用了(2) (一)知识回顾 (三)例题解析 (五)课堂小结 (二)观察发现 例1、例2 (四)课堂练习 练习设计 九、教学后记 在传授知识的同时,一定要重视数学基本思想方法的教学关于这一点,布鲁纳有过精彩的论述他指出,掌握数学思想和方法可以使数学更容易理解和更容易记忆,更重要的是领会数学思想和方法是通向迁移大道的“光

12、明之路”,如果把数学思想和方法学好了,在数学思想和方法的指导下运用数学方法驾驭数学知识,就能培养学生的数学能力不但使数学学习变得容易,而且会使得别的学科容易学习显然,按照布鲁纳的观点,数学教学就不能就知识论知识,而是要使学生掌握数学最根本的东西,用数学思想和方法统摄具体知识,具体解决问题的方法,逐步形成和发展数学能力 为了使学生掌握必要的数学思想和方法,需要在教学中结合内容逐步渗透,而不能脱离内容形式地传授本课中,我们有意识地突出“分类讨论”这一数学思想方法,并在教学中注意渗透两点: 1分类的标准不同,分类的结果也不相同; 2分类的结果应是无遗漏、无重复,即每一个数必须属于某一类,又不能同时属

13、于不同的两类 第十六课时 一、课题 2.2数轴(1) 二、教学目标 1使学生正确理解数轴的意义,掌握数轴的三要素; 2使学生学会由数轴上的已知点说出它所表示的数,能将有理数用数轴上的点表示出来; 3使学生初步理解数形结合的思想方法 三、教学重点和难点 重点难点 初步理解数形结合的思想方法,正确掌握数轴画法和用数轴上的点表示有理数正确理解有理数与数轴上点的对应关系 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有认知结构提出问题 1小学里曾用“射线”上的点来表示数,你能在射线上表示出1和2吗? 2用“射线”能不能表示有理数?为什么? 3你认为把“射线”做

14、怎样的改动,才能用来表示有理数呢? 待学生回答后,教师指出,这就是我们本节课所要学习的内容数轴 (二)、讲授新课 让学生观察挂图放大的温度计,同时教师给予语言指导:利用温度计可以测量温度,在温度计上有刻度,刻度上标有读数,根据温度计的液面的不同位置就可以读出不同的数,从而得到所测的温度在0上10个刻度,表示10;在0下5个刻度,表示-5 与温度计类似,我们也可以在一条直线上画出刻度,标上读数,用直线上的点表示正数、负数和零具体方法如下(边说边画): 1画一条水平的直线,在这条直线上任取一点作为原点(通常取适中的位置,如果所需的都是正数,也可偏向左边)用这点表示0(相当于温度计上的0); 2规定

15、直线上从原点向右为正方向(箭头所指的方向),那么从原点向左为负方向(相当于温度计上0以上为正,0以下为负); 3选取适当的长度作为单位长度,在直线上,从原点向右,每隔一个长度单位取一点,依次表示为1,2,3,从原点向左,每隔一个长度单位取一点,依次表示为-1,-2,-3, 提问:我们能不能用这条直线表示任何有理数?(可列举几个数) 在此基础上,给出数轴的定义,即规定了原点、正方向和单位长度的直线叫做数轴 进而提问学生:在数轴上,已知一点P表示数-5,如果数轴上的原点不选在原来位置,而改选在另一位置,那么P对应的数是否还是-5?如果单位长度改变呢?如果直线的正方向改变呢? 通过上述提问,向学生指

16、出:数轴的三要素原点、正方向和单位长度,缺一不可 三、运用举例 变式练习 例1 画一个数轴,并在数轴上画出表示下列各数的点: 例2 指出数轴上A,B,C,D,E各点分别表示什么数 课堂练习 说出下面数轴上A,B,C,D,O,M各点表示什么数? 最后引导学生得出结论:正有理数可用原点右边的点表示,负有理数可用原点左边的点表示,零用原点表示 (四)、小结 指导学生阅读教材后指出:数轴是非常重要的数学工具,它使数和直线上的点建立了对应关系,它揭示了数和形之间的内在联系,为我们研究问题提供了新的方法 本节课要求同学们能掌握数轴的三要素,正确地画出数轴,在此还要提醒同学们,所有的有理数都可用数轴上的点来

17、表示,但是反过来不成立,即数轴上的点并不是都表示有理数,至于数轴上的哪些点不能表示有理数,这个问题以后再研究 七、练习设计 1在下面数轴上: (1)分别指出表示-2,3,-4,0,1各数的点 (2)A,H,D,E,O各点分别表示什么数? 2在下面数轴上,A,B,C,D各点分别表示什么数? 3下列各小题先分别画出数轴,然后在数轴上画出表示大括号内的一组数的点: (1)-5,2,-1,-3,0; (2)-4,2.5,-1.5,3.5; 八、板书设计 22数轴(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 从学生已有知识、经

18、验出发研究新问题,是我们组织教学的一个重要原则小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识直线、数轴都是非常抽象的数学概念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等 第十七课时 一、课题 2.2数轴(2) 二、教学目标 1使学生进一步掌握数轴概念; 2使学生会利用数轴比较有理数的大小; 3使学生进一步理解数形结合的思想方法

19、 三、教学重点和难点 重点:会比较有理数的大小 难点:如何比较两个负数(尤其是两个负分数)的大小 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有的认识结构提出问题 1数轴怎么画?它包括哪几个要素? 2大于0的数在数轴上位于原点的哪一侧?小于0的数呢? (二)、师生共同探索利用数轴比较有理数大小的法则 在温度计上显示的两个温度,上边的温度总比下边的温度高,例如,5在-2上边, 5高于-2;-1在-4上边,-1高于-4 下面的结论引导学生把温度计与数轴类比,自己归纳出来:在数轴上表示的两个数,右边的数总比左边的数大 (三)、运用举例 变式练习 通过此例引

20、导学生总结出“正数都大于0,负数都小于0,正数大于一切负数”的规律要提醒学生,用“”连接两个以上数时,小数在前,大数在后,不能出现504这样的式子 例2 观察数轴,找出符合下列要求的数: (1)最大的正整数和最小的正整数; (2)最大的负整数和最小的负整数; (3)最大的整数和最小的整数; (4)最小的正分数和最大的负分数 在解本题时应适时提醒学生,直线是向两边无限延伸的 课堂练习 2在数轴上画出表示下列各数的点,并用“”把它们连接起来: (四)、小结 教师指出这节课主要内容是利用数轴比较两个有理数的大小,进而要求学生叙述比较的法则 七、练习设计 1比较下列每对数的大小: 2把下列各组数从小到

21、大用“”号连接起来: (1)3,-5,-4; (2)-9,16,-11; 3下表是我国几个城市某年一月份的平均气温,把它们按从高到低的顺序排列 八、板书设计 22数轴(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例3、例4 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 从学生已有知识、经验出发研究新问题,是我们组织教学的一个重要原则小学里曾学过利用射线上的点来表示数,为此我们可引导学生思考:把射线怎样做些改进就可以用来表示有理数?伴以温度计为模型,引出数轴的概念教学中,数轴的三要素中的每一要素都要认真分析它的作用,使学生从直观认识上升到理性认识直线、数轴都是非常抽象的数学概

22、念,当然对初学者不宜讲的过多,但适当引导学生进行抽象的思维活动还是可行的例如,向学生提问:在数轴上对应一亿万分之一的点,你能画出来吗?它是不是存在等 第十八课时 一、课题 2.3绝对值(1) 二、教学目标 1、使学生掌握有理数的绝对值概念及表示方法; 2、使学生熟练掌握有理数绝对值的求法和有关的简单计算; 3、在绝对值概念形成过程中,渗透数形结合等思想方法,并注意培养学生的概括能力 三、教学重点和难点 正确理解绝对值的概念 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有的认知结构提出问题 1、下列各数中: +7,-2, ,-83,0,+001,- ,

23、1 ,哪些是正数?哪些是负数?哪些是非负数? 2、什么叫做数轴?画一条数轴,并在数轴上标出下列各数: -3,4,0,3,-15,-4, ,2 3、问题2中有哪些数互为相反数?从数轴上看,互为相反数的一对有理数有什么特点? 4、怎样表示一个数的相反数? (二)、师生共同研究形成绝对值概念 例1 两辆汽车,第一辆沿公路向东行驶了5千米,第二辆向西行驶了4千米,为了表示行驶的方向(规定向东为正)和所在位置,分别记作+5千米和-4千米这样,利用有理数就可以明确表示每辆汽车在公路上的位置了 我们知道,出租汽车是计程收费的,这时我们只需要考虑汽车行驶的距离,不需要考虑方向当不考虑方向时,两辆汽车行驶的距离

24、就可以记为5千米和4千米(在图上标出距离)这里的5叫做+5的绝对值,4叫做-4的绝对值 例2 两位徒工分别用卷尺测量一段1米长的钢管,由于测量工具使用不当或读数不准确,甲测得的结果是101米,乙侧得的结果是098米甲测量的差额即多出的数记作+001米,乙测量的差额即减少的数记作-002米 如果不计测量结果是多出或减少,只考虑测量误差,那么他们测量的误差分别是001和002这里所说的测量误差也就是测量结果所多出来或减少了的数+001和-002和7-002的绝对值 如果请有经验的老师傅进行测量,结果恰好是1米,我们用有理数来表示测量的误差,这个数就是0(也可以记作+0或-0),自然这个差额0的绝以

25、值是0 现在我们撇开例题的实际意义来研究有理数的绝对值,那么,有 +5的绝对值是5,在数轴上表示+5的点到原点的距离是5; -4的绝对值是4,在数轴上表示-4的点到原点的距离是4; +001的绝对值是001,在数轴上表示+001的点到原点的距离是001; -002的绝对值是002,在数轴上表示-002的点它到原点的距离是002; 0的绝对值是0,表明它到原点的距离是0 一般地,一个数a的绝对值就是数轴上表示a的点到原点的距离 为了方便,我们用一种符号来表示一个数的绝对值约定在一个数的两旁各画一条竖线来表示这个数的绝对值如 +5的绝对值记作+5,显然有+5=5; -002的绝对值记作-002,显

26、然有-002=002; 0的绝对值记作0,也就是0=0 a的绝对值记作a,(提醒学生a可以是正数,也可以是负数或0) 例3 利用数轴求5,32,7,-2,-71,-05的绝对值 由例3学生自己归纳出: 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0的绝对值是0 这也是绝对值的代数定义把绝对值的代数定义用数学符号语言如何表达? 把文字叙述语言变换成数学符号语言,这是一个比较困难的问题,教师应帮助学生完成这一步 1、用a表示一个数,如何表示a是正数,a是负数,a是0? 由有理数大小比较可以知道: a是正数:a0;a是负数:a0;a是0:a=0 2、怎样表示a的本身,a的相反数? a

27、的本身是自然数还是a.a的相反数为-a. 现在可以把绝对值的代数定义表示成 如果a0,那么 =a;如果a0,那么 =-a;如果a=0,那么 =0 由绝对值的代数定义,我们可以很方便地求已知数的绝对值了 例4 求8,-8, ,- ,0,6,-,-5的绝对值 (三)、课堂练习 1、下列哪些数是正数? -2, , , ,- ,-(-2),- 2、在括号里填写适当的数: =( ); =( ); - =( ); - =( ); =1, =0; - =-2 3、计算下列各题: |-3|+|+5|;|-3|+|-5|;|+2|-|-2|;|-3|-|-2|;|- |- |;|- |-2|; |- |。 (四

28、)、小结 指导学生阅读教材,进一步理解绝对值的代数和几何意义 七、练习设计 1、填空: (1)+3的符号是_,绝对值是_; (2)-3的符号是_,绝对值是_; (3)- 的符号是_,绝对值是_; (4)10-5的符号是_,绝对值是_ 2、填空: (1)符号是+号,绝对值是7的数是_; (2)符号是-号,绝对值是7的数是_; (3)符号是-号,绝对值是035的数是_; (4)符号是+号,绝对值是1 的数是_; 3、(1)绝对值是 的数有几个?各是什么? (2)绝对值是0的数有几个?各是什么? (3)有没有绝对值是-2的数? 4、计算: (1)|-15|-|-6|; (2)|-024|+|-506

29、|; (3)|-3|-2|; (4)|+4|-5|; (3)|-12|+2|; (6)|20|- | 5、填空: (1)当a0时,|2a|=_; (2)当a1时,|a-1|=_; (3)当a1时,|a-1|=_ 八、板书设计 23绝对值(1) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习 练习设计 九、教学后记 1、关于概念结构的理论,罗希提出的原型说(1975年)认为,概念主要以原型即它的最佳关例表达出来一个数的绝对值实质上是该数所对应的点到原点的距离的数值因此,我们选用了例1,它对于理解和形成绝对值概念是有益的布尔纳提出了特征表说(1979年)

30、,他主张从个体所具有的共同重要特征来说明概念,所以,这里配合例1选用了例2,意图是突出它们的共同特征,增强学生对绝对值概念的感性认识,同时还能对零的绝对值给出一个比较自然的解释 2、中学代数里,实数绝对值的形式定义是:a R, |a|= 而利用数轴将表示a的点到原点的距离作为它的一种几何解释实际上,它的几何意义反映了概念的本质,也可以作为绝对值的定义即实质定义一般在同一知识系统中不宜出现同一对象的两种不同定义,为了避免证明等价性的麻烦,通常以形式化的表述作为定义,另一种表术作为辅助性的解释,这在逻辑上可带来方便,其不足之处是形式定义较难理解 我们采用的办法是重点放在几何意义的理解上,最后再概括

31、上升到形式定义上来这样比较符合从感性认识上升到理性认识的规律,同时使得绝对值概念的非负性具有较扎实的基础 第十九课时 一、课题 2.3绝对值(2) 二、教学目标 1、使学生进一步掌握绝对值概念; 2、使学生掌握利用绝对值比较两个负数的大小; 3、注意培养学生的推时论证能力 三、教学重点和难点 负数大小比较 四、教学手段 现代课堂教学手段 五、教学方法 启发式教学 六、教学过程 (一)、从学生原有认知结构提出问题 1、计算:|+15|;|- |;|0| 2、计算:| - |;|- - |. 3、比较-(-5)和-|-5|,+(-5)和+|-5|的大小 4、哪个数的绝对值等于0?等于 ?等于-1?

32、 5、绝对值小于3的数有哪些?绝对值小于3的整数有哪几个? 6、a,b所表示的数如图所示,求|a|,|b|,|a+b|,|b-a| 7、若|a|+|b-1|=0,求a,b 这一组题从不同角度提出问题,以使学生进一步掌握绝对值概念 解:1、|+15|=15,|- |= ,|0|=0 让学生口答这样做的依据 2、| - |=| |= |,|- - =-(- - )。 说明:“| |”有两重作用,即绝对值和括号 3、因为-(-5)=5,-|-5|=-5,5-5, 所以-(-5)-|-5|。 这里需讲清一个问题,即-(-5)和-|-5|的读法,让学生熟悉,-(-5)读作-5的相反数,-|-5|读作-5

33、绝对值的相反数 因为+(-5)=-5,+|-5|=,-55, 所以+(-5)+|-5| 4、0的绝对值等于0, 的绝对值等于 ,没有什么数的绝对值等于-1(为什么?)用符号语言表示应为: |0|=0,|+ |= |,|- |= 。 这里应再次强调绝对值是数轴上的点与原点的距离,并指出距离是非负量 5、绝对值小于3的数是从-3到3中间的所有的有理数,有无数多个;但绝对值小于3的整数只有五个:-2,-1,0,1,2 用符号语言表示应为: 因为|x|3,所以-3x3 如果x是整数,那么x=-2,-1,0,1,2 6、由数轴上a、b的位置可以知道a0,b0,且|a|b| 所以|a|=-a,|b|=b,

34、 |a+b|=a+b,|b-a|=b-a 7、若a+b=0,则a,b互为相反数或a,b都是0,因为绝对值非负,所以只有|a|=0,|b-1|=0,由绝对值意义得a=0,b-1=0 用符号语言表示应为: 因为|a|+|b-1|=0,所以a=0,b-1=0, 所以a=0,b=1 (二)、师生共同探索利用绝对值比较负数大小的法则 利用数轴我们已经会比较有理数的大小 由上面数轴,我们可以知道cba,其中b,c都是负数,它们的绝对值哪个大?显然 引导学生得出结论: 两个负数,绝对值大的反而小 这样以后在比较负数大小时就不必每次再画数轴了 (三)、运用举例 变式练习 例1 比较-4 与-|3|的大小 例2

35、 已知ab0,比较a,-a,b,-b的大小 例3 比较- 与- 的大小 课堂练习 1、比较下列每对数的大小: 与 ;|2|与 ;- 与 ; 与 2、比较下列每对数的大小: - 与- ;- 与- ;- 与- ;- 与- (四)、小结 先由学生叙述比较有理数大小的两种方法利用数轴比较大小;利用绝对值比较大小,然后教师引导学生得出:比较两个有理数的大小,实际上是由符号与绝对值两方面来确定学习了绝对值以后,就可以不必利用数轴来比较两个有理数的大小了 七、练习设计 1、判断下列各式是否正确: (1)|-01|-001|; (2)|- | ; (3) ; (4) - 2、比较下列每对数的大小: (1)- 与- ;(2)- 与-0273;(3)- 与- ; (4)- 与- ;(5)- 与- ;(6)- 与- 3、写出绝对值大于3而小于8的所有整数 4、你能说出符合下列条件的字母表示什么数吗? (1)|a|=a; (2)|a|=-a; (3) =-1; (4)a-a; (5)|a|a; (6)-y0; (7)-a0; (8)a+b=0 5若|a+1|+|b-a|=0,求a,b 八、板书设计 23绝对值(2) (一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2 (二)观察发现 (四)课堂练习

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服