1、第七章7.1 表7.11中给出了1970-1987年期间美国的个人消费支出(PCE)和个人可支配收入(PDI)数据,所有数字的单位都是10亿美元(1982年的美元价)。表7.11 1970-1987年美国个人消费支出(PCE)和个人可支配收入(PDI)数据年份 PCE PDI年份 PCE PDI年份 PCE PDI1970 1492.0 1668.1 1971 1538.8 1728.41972 1621.9 1797.41973 1689.6 1916.31974 1674.0 1896.61975 1711.9 1931.71976 1803.9 2001.0 1977 1883.8 20
2、66.61978 1961.0 2167.41979 2004.4 2212.61980 2000.4 2214.31981 2042.2 2248.61982 2050.7 2261.51983 2146.0 2331.9 1984 2249.3 2469.81985 2354.8 2542.81986 2455.2 2640.91987 2521.0 2686.3估计下列模型: (1) 解释这两个回归模型的结果。(2) 短期和长期边际消费倾向(MPC)是多少?练习题7.1参考解答:1)第一个模型回归的估计结果如下,Dependent Variable: PCEMethod: Least S
3、quaresDate: 07/27/05 Time: 21:41Sample: 1970 1987Included observations: 18VariableCoefficientStd. Errort-StatisticProb.C-216.426932.69425-6.6197230.0000PDI1.0081060.01503367.059200.0000R-squared0.996455Mean dependent var1955.606Adjusted R-squared0.996233S.D. dependent var307.7170S.E. of regression18
4、.88628Akaike info criterion8.819188Sum squared resid5707.065Schwarz criterion8.918118Log likelihood-77.37269F-statistic4496.936Durbin-Watson stat1.366654Prob(F-statistic)0.000000回归方程: (3269425) (0.015033) t =(-6.619723) (67.05920) =0.996455 F=4496.936第二个模型回归的估计结果如下,Dependent Variable: PCEMethod: Lea
5、st SquaresDate: 07/27/05 Time: 21:51Sample (adjusted): 1971 1987Included observations: 17 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-233.273645.55736-5.1204360.0002PDI0.9823820.1409286.9708170.0000PCE(-1)0.0371580.1440260.2579970.8002R-squared0.996542Mean dependent var1982.876Ad
6、justed R-squared0.996048S.D. dependent var293.9125S.E. of regression18.47783Akaike info criterion8.829805Sum squared resid4780.022Schwarz criterion8.976843Log likelihood-72.05335F-statistic2017.064Durbin-Watson stat1.570195Prob(F-statistic)0.000000回归方程: (45.557) (0.1409) (0.1440) t = (-5.120) (6.970
7、8) (0.258) =0.9965 F=2017.0642)从模型一得到MPC=1.008;从模型二得到,短期MPC=0.9824,由于模型二为自回归模型,要先转换为分布滞后模型才能得到长期边际消费倾向,我们可以从库伊克变换倒推得到长期MPC=0.9824/(1+0.0372)=0.9472。7.2 表7.12中给出了某地区1980-2001年固定资产投资Y与销售额X的资料。表7.12 某地区1980-2001年固定资产投资Y与销售额X的资料(单位:亿元) 年份YX年份YX198036.9952.8051991128.68168.129198133.6055.9061992123.97163
8、.351198235.4263.0271993117.35172.547198342.3572.9311994139.61190.682198452.4884.7901995152.88194.538198553.6686.5891996137.95194.657198658.5398.7971997141.06206.326198767.48113.2011998163.45223.541198878.13126.9051999183.80232.724198995.13143.9362000192.61239.4591990112.60154.3912001182.81235.142运用局
9、部调整假定或自适应预期假定估计以下模型参数,并解释模型的经济意义,探测模型扰动项的一阶自相关性:1)设定模型 其中为预期最佳值。 2)设定模型 其中为预期最佳值。3)设定模型 其中为预期最佳值。练习题7.2参考解答:1)在局部调整假定下,先估计一阶自回归模型:回归的估计结果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientSt
10、d. Errort-StatisticProb.C-15.104034.729450-3.1936130.0050X0.6292730.0978196.4330310.0000Y(-1)0.2716760.1148582.3653150.0294R-squared0.987125Mean dependent var109.2167Adjusted R-squared0.985695S.D. dependent var51.78550S.E. of regression6.193728Akaike info criterion6.616515Sum squared resid690.5208Sc
11、hwarz criterion6.765733Log likelihood-66.47341F-statistic690.0561Durbin-Watson stat1.518595Prob(F-statistic)0.000000回归方程: (4.729450) (0.097819) (0.114858) t = (-3.193613) (6.433031) (2.365315) =0.987125 F=690.0561 DW=1.518595根据局部调整模型的参数关系,有将上述估计结果代入得到: 故局部调整模型估计结果为:经济意义:该地区销售额每增加1亿元,未来预期最佳新增固定资产投资为0
12、.864001亿元。运用德宾h检验一阶自相关:在显著性水平上,查标准正态分布表得临界值,由于,则接收原假设,说明自回归模型不存在一阶自相关问题。 2)先对数变换模型,有在局部调整假定下,先估计一阶自回归模型:回归的估计结果如下,Dependent Variable: LNYMethod: Least SquaresDate: 25/02/10 Time: 22:55Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.
13、C-1.0780460.184144-5.8543660.0000LNX0.9045220.1112438.1310390.0000LNY(-1)0.2600330.0877992.9616840.0084R-squared0.993725Mean dependent var4.559823Adjusted R-squared0.993028S.D. dependent var0.562953S.E. of regression0.047007Akaike info criterion-3.145469Sum squared resid0.039774Schwarz criterion-2.9
14、96251Log likelihood36.02742F-statistic1425.219Durbin-Watson stat1.479333Prob(F-statistic)0.000000回归方程: (0.184144) (0.111243) (0.087799) t = (-5.854366) (8.131039) (2.961684) =0.993725 F=1425.219 DW1=1.479333根据局部调整模型的参数关系,有,将上述估计结果代入得到: 故局部调整模型估计结果为:,也即经济意义:该地区销售额每增加1%,未来预期最佳新增固定资产投资为1.22238%。运用德宾h检验
15、一阶自相关:在显著性水平上,查标准正态分布表得临界值,由于,则接收原假设,说明自回归模型不存在一阶自相关。3)在自适应预期假定下,先估计一阶自回归模型:回归的估计结果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 22:42Sample (adjusted): 1981 2001Included observations: 21 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C-15.104034.729450-3.1936130.0
16、050X0.6292730.0978196.4330310.0000Y(-1)0.2716760.1148582.3653150.0294R-squared0.987125Mean dependent var109.2167Adjusted R-squared0.985695S.D. dependent var51.78550S.E. of regression6.193728Akaike info criterion6.616515Sum squared resid690.5208Schwarz criterion6.765733Log likelihood-66.47341F-statis
17、tic690.0561Durbin-Watson stat1.518595Prob(F-statistic)0.000000回归方程: (4.729450) (0.097819) (0.114858) t = (-3.193613) (6.433031) (2.365315) =0.987125 F=690.0561 DW=1.518595根据局部调整模型的参数关系,有将上述估计结果代入得到: 故局部调整模型估计结果为:经济意义:该地区销售额每增加1亿元,未来预期最佳新增固定资产投资为0.864001亿元。运用德宾h检验一阶自相关:在显著性水平上,查标准正态分布表得临界值,由于,则接收原假设,
18、说明自回归模型不存在一阶自相关。7.3 利用表7.12的数据,取阿尔蒙多项式的次数m=2,运用阿尔蒙多项式变换法估计分布滞后模型: 练习题7.3参考解答:分布滞后模型: s=4,取m=2。假设, (*)则模型可变为:,其中:估计的回归结果如下,Dependent Variable: YMethod: Least SquaresDate: 25/02/10 Time: 23:19Sample (adjusted): 1984 2001Included observations: 18 after adjustmentsVariableCoefficientStd. Errort-Statisti
19、cProb.C-35.492348.192884-4.3320930.0007Z00.8910120.1745635.1042480.0002Z1-0.6699040.254447-2.6327830.0197Z20.1043920.0623111.6753380.1160R-squared0.984670Mean dependent var121.2322Adjusted R-squared0.981385S.D. dependent var45.63348S.E. of regression6.226131Akaike info criterion6.688517Sum squared r
20、esid542.7059Schwarz criterion6.886378Log likelihood-56.19666F-statistic299.7429Durbin-Watson stat1.130400Prob(F-statistic)0.000000回归方程:由(*)式可得,由阿尔蒙多项式变换可得如下估计结果:7.4 表7.13中给出了1962-1995年某地区基本建设新增固定资产Y和全省工业总产值X按当年价格计算的历史资料。表7.13 1962-1995年某地区基本建设新增固定资产Y和全省工业总产值X(单位:亿元)年份YX年份YX 19620.944.9519792.0642.69
21、19631.696.6319807.9351.6119641.788.5119818.0161.519651.849.3719826.6460.7319664.3611.2319831664.6419677.0211.3419848.8166.6719685.5519.9198510.3873.7819696.9329.4919866.269.5219707.1736.8319877.9779.6419712.3321.19198827.3392.4519722.1818.14198912.58102.9419732.3919.69199012.47105.6219743.323.881991
22、10.88104.8819755.2429.65199217.7113.319765.3940.94199314.72127.1319771.7833.08199413.76141.4419780.7320.3199514.42173.75(1) 设定模型 作局部调整假定,估计参数,并作解释。 (2) 设定模型 作自适应预期假定,估计参数,并作解释。 (3) 比较上述两种模型的设定及拟合情况,你觉得哪一个模型较好,为什么?练习题7.4参考解答:1)在局部调整假定下,先估计一阶自回归模型,回归的估计结果如下,Dependent Variable: YMethod: Least SquaresDa
23、te: 07/27/05 Time: 22:31Sample (adjusted): 1963 1995Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C1.8966451.1671271.6250550.1146X0.1021990.0247824.1239610.0003Y(-1)0.0147000.1828650.0803890.9365R-squared0.584750Mean dependent var7.804242Adjusted R-squared0.
24、557066S.D. dependent var5.889686S.E. of regression3.919779Akaike info criterion5.656455Sum squared resid460.9399Schwarz criterion5.792502Log likelihood-90.33151F-statistic21.12278Durbin-Watson stat1.901308Prob(F-statistic)0.000002回归方程: (1.167)(0.0248) (0.182865) t =(1.625)(4.1239) (0.080389) =0.5847
25、50 F=21.12278可以看出,的回归系数显著,而的回归系数不显著,不是很高,模型整体上对样本数据拟合一般。根据局部调整模型的参数关系,有,将上述估计结果代入得到:故局部调整模型为:经济意义:为了达到全省工业总产值的计划值,寻求一个未来预期新增固定资产的最佳量。全省工业总产值每计划增加1(亿元),则未来预期最佳新增固定资产量为0.1037亿元。2)在自适应预期假定下,先估计一阶自回归模型,回归的估计结果如下,Dependent Variable: YMethod: Least SquaresDate: 07/27/05 Time: 22:31Sample (adjusted): 1963
26、1995Included observations: 33 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C1.8966451.1671271.6250550.1146X0.1021990.0247824.1239610.0003Y(-1)0.0147000.1828650.0803890.9365R-squared0.584750Mean dependent var7.804242Adjusted R-squared0.557066S.D. dependent var5.889686S.E. of regressi
27、on3.919779Akaike info criterion5.656455Sum squared resid460.9399Schwarz criterion5.792502Log likelihood-90.33151F-statistic21.12278Durbin-Watson stat1.901308Prob(F-statistic)0.000002回归方程: (1.167)(0.0248) (0.182865) t =(1.625)(4.1239) (0.080389) =0.584750 F=21.12278可以看出,的回归系数显著,而的回归系数不显著,不是很高,模型整体上对样
28、本数据拟合一般。根据自适应模型的参数关系,有,代入得到:故局部调整模型为:经济意义:新增固定资产的变化取决于全省工业总产值的预期值。全省工业总产值每预期增加增加1(亿元),当期新增固定资产量为0.1037(亿元)。3)局部调整模型和自适应模型的区别在于:局部调整模型是对应变量的局部调整而得到的;而自适应模型是由解释变量的自适应过程而得到的。由回归结果可见,Y滞后一期的回归系数并不显著,说明两个模型的设定都不合理。7.5 表7.14给出某地区各年末货币流通量Y,社会商品零售额X1、城乡居民储蓄余额X 2的数据。表7.14 某地区年末货币流通量、社会商品零售额、城乡居民储蓄余额数据(单位:亿元)年
29、份年末货币流通量Y社会商品零售额X1城乡居民储蓄余额X2年份年末货币流通量Y社会商品零售额X1城乡居民储蓄余额X2195310518786764163197038500240332261561954140881014334888197147100274534309441955133751039895689197257200299197359611956183541245257406197360000314006396671957168671264679156197462500318954433201958185151344461019319756450033601546184195922558
30、154961139391976680003529244831119602903617037015495197763000378115533131961414721491821255319786600041583061290196234826154564100801979760004520327003319633000014254811602198085000512543928001964243001434151503119819000054795610970719652930015699817108198210100059108813379919663390017638719301198310
31、0000646427164314196736100178162204851984160000733162201199196839600167074225721985192000919045277185利用表中数据设定模型: 其中,为长期(或所需求的)货币流通量。试根据局部调整假设,作模型变换,估计并检验参数,对参数经济意义做出解释。练习题7.5参考解答:1)在局部调整假定下,先估计一阶自回归模型:回归的估计结果如下:Dependent Variable: YMethod: Least SquaresDate: 26/02/10 Time: 15:56Sample (adjusted): 195
32、4 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C6596.2284344.0781.5184420.1401X10.0474510.0396101.1979400.2410X20.2748380.0905343.0357360.0051Y(-1)0.4052750.1872202.1646990.0391R-squared0.967247Mean dependent var55355.97Adjusted R-squared0.963738S.D. de
33、pendent var40464.90S.E. of regression7705.604Akaike info criterion20.85375Sum squared resid1.66E+09Schwarz criterion21.03697Log likelihood-329.6600F-statistic275.6267Durbin-Watson stat2.109534Prob(F-statistic)0.000000回归方程: (4344.078) (0.039610) (0.090534) (0.187220) t = (1.518442) (1.197940) (3.0357
34、36) (2.164699) =0.967247 F=275.6267 DW=2.109534根据局部调整模型的参数关系,有将上述估计结果代入得到: 故局部调整模型估计结果为:经济意义:在其他条件不变的情况下,该地区社会商品零售额每增加1亿元,则预期年末货币流通量增加0.07978亿元。同样,在其他条件不变的情况下,该地区城乡居民储蓄余额每增加1亿元,则预期年末货币流通量增加0.462126亿元。2)先对数变换模型形式,在局部调整假定下,先估计一阶自回归模型:回归的估计结果如下:Dependent Variable: LNYMethod: Least SquaresDate: 26/02/10
35、 Time: 16:12Sample (adjusted): 1954 1985Included observations: 32 after adjustmentsVariableCoefficientStd. Errort-StatisticProb.C0.6443331.6778880.3840140.7039LNX10.2062300.2555570.8069840.4265LNX20.1801680.1549131.1630310.2546LNY(-1)0.5314450.1092604.8640490.0000R-squared0.968959Mean dependent var1
36、0.70088Adjusted R-squared0.965633S.D. dependent var0.672279S.E. of regression0.124629Akaike info criterion-1.210486Sum squared resid0.434905Schwarz criterion-1.027269Log likelihood23.36778F-statistic291.3458Durbin-Watson stat1.914829Prob(F-statistic)0.000000回归方程: (1.677888) (0.255557) (0.154913) (0.531445) t = (0.384014) (0.806984) (1.163013) (4.864049) =0.968959 F=291.3458 DW=1.914829根据局部调整模型的参数关系,有将上述估计结果代入得到: 故局部调整模型估计结果为:经济意义:货币需求对社会商品零售额的长期弹性为:0.44104;货币需求对城乡居民储蓄余额的长期弹性为0.384518。7.6 设 其中:M为实际货币流通量,为期望社会商品零售总额,为期望储蓄总额,对于期望值作如下假定: