1、2022-2023学年九上数学期末模拟试卷注意事项:1 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2选择题必须使用2B铅笔填涂;非选择题必须使用05毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1如图,用菱形纸片按规律依次拼成如图图案,第个图案有个菱形纸片,第个图案有个菱形纸片,第个图案有个菱形纸片,按此规律,第个图案中菱形纸片数量为( )ABCD2
2、三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是A24B24或C48或D3如图,已知抛物线与轴分别交于、两点,将抛物线向上平移得到,过点作轴交抛物线于点,如果由抛物线、直线及轴所围成的阴影部分的面积为,则抛物线的函数表达式为( )ABCD4下列方程中,是关于x的一元二次方程的是()A5x+52x1By27y0Cax2+bc+c0D2x2+2xx2-15孙子算经中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设
3、木条长尺,绳子长尺,根据题意列方程组正确的是( )ABCD6如图,等边的边长为 是边上的中线,点是 边上的中点. 如果点是 上的动点,那么的最 小值为( )ABCD7下列说法正确的是( )A若某种游戏活动的中奖率是,则参加这种活动10次必有3次中奖B可能性很大的事件在一次试验中必然会发生C相等的圆心角所对的弧相等是随机事件D掷一枚图钉,落地后钉尖“朝上”和“朝下”的可能性相等8已知一扇形的圆心角为,半径为,则以此扇形为侧面的圆锥的底面圆的周长为( )ABCD9如图,在ABC中,A=90若AB=12,AC=5,则cosC的值为( )ABCD10用配方法解一元二次方程时,此方程可变形为( )ABC
4、D11已知甲、乙两地相距100(km),汽车从甲地匀速行驶到乙地,则汽车行驶的时间(t)与行驶速度v(km/h)的函数关系图象大致是( )ABCD12如图,二次函数yax2+bx+c(a0)的图象与x轴的交点A、B的横坐标分别为1和3,则函数值y随x值的增大而减小时,x的取值范围是( )Ax1Bx1Cx2Dx2二、填空题(每题4分,共24分)13一元二次方程的解是_.14如图,在中,且,点是斜边上的一个动点,过点分别作于点,于点,连接,则线段的最小值为_15如图,抛物线yax2与直线ybx+c的两个交点坐标分别为A(2,4),B(1,1),则不等式ax2bx+c的解集是_.16如图,在ABCD
5、中,AB10,AD6,ACBC则BD_17如图所示,在中,点是重心,联结,过点作,交于点,若,则的周长等于_.18如图,中,点在边上.若,则的长为_.三、解答题(共78分)19(8分)如图,在一个可以自由转动的转盘中,指针位置固定,三个扇形的面积都相等,且分别标有数字1,2,1(1)小明转动转盘一次,当转盘停止转动时,指针所指扇形中的数字是奇数的概率为 (2)小明和小颖用转盘做游戏,每人转动转盘一次,若两次指针所指数字之和为奇数,则小明胜,否则小颖胜(指针指在分界线时重转),这个游戏对双方公平吗?请用树状图或者列表法说明理由20(8分)有两个构造完全相同(除所标数字外)的转盘A、B,游戏规定,
6、转动两个转盘各一次,指向大的数字获胜现由你和小明各选择一个转盘游戏,你会选择哪一个,为什么?21(8分)一般情况下,中学生完成数学家庭作业时,注意力指数随时间x(分钟)的变化规律如图所示(其中AB、BC为线段,CD为双曲线的一部分)(1)分别求出线段AB和双曲线CD的函数关系式;(2)若学生的注意力指数不低于40为高效时间,根据图中信息,求出一般情况下,完成一份数学家庭作业的高效时间是多少分钟?22(10分)某数学小组在郊外的水平空地上对无人机进行测高实验如图,两台测角仪分别放在A、B位置,且离地面高均为1米(即米),两台测角仪相距50米(即AB=50米)在某一时刻无人机位于点C (点C与点A
7、、B在同一平面内),A处测得其仰角为,B处测得其仰角为(参考数据:,)(1)求该时刻无人机的离地高度;(单位:米,结果保留整数)(2)无人机沿水平方向向左飞行2秒后到达点F(点F与点A、B、C在同一平面内),此时于A处测得无人机的仰角为,求无人机水平飞行的平均速度(单位:米/秒,结果保留整数)23(10分)在O中,AB为直径,C为O上一点(1)如图1,过点C作O的切线,与AB延长线相交于点P,若CAB=27,求P的度数;(2)如图2,D为弧AB上一点,ODAC,垂足为E,连接DC并延长,与AB的延长线交于点P,若CAB=10,求P的大小24(10分)定义:如果三角形的两个内角与满足,那么称这样
8、的三角形为“类直角三角形”尝试运用(1)如图1,在中,是的平分线证明是“类直角三角形”;试问在边上是否存在点(异于点),使得也是“类直角三角形”?若存在,请求出的长;若不存在,请说明理由类比拓展(2)如图2,内接于,直径,弦,点是弧上一动点(包括端点,),延长至点,连结,且,当是“类直角三角形”时,求的长25(12分)如图,已知ABC,以AC为直径的O交AB于点D,点E为弧AD的中点,连接CE交AB于点F,且BF=BC,(1)求证:BC是O的切线;(2)若O的半径为2,=,求CE的长26解方程:(1)3x(x-2)=4(x-2); (2)2x2-4x+1=0参考答案一、选择题(每题4分,共48
9、分)1、D【解析】观察图形发现:每增加一个图形,菱形纸片增加4个,从而得到通项公式,代入n=7求解即可【详解】观察图形发现:第1个图案中有5=41+1个菱形纸片;第2个图案中有9=42+1个菱形纸片;第3个图形中有13=43+1个菱形纸片,第n个图形中有4n+1个菱形纸片,当n=7时,47+1=29个菱形纸片,故选:D.【点睛】属于规律型:图形的变化类,找出图中菱形纸片个数的变化规律是解题的关键.2、B【分析】由,可利用因式分解法求得x的值,然后分别从x=6时,是等腰三角形;与x=10时,是直角三角形去分析求解即可求得答案【详解】,(x6)(x10)=0,解得:x1=6,x2=10,当x=6时
10、,则三角形是等腰三角形,如图,AB=AC=6,BC=8,AD是高,BD=4,AD=,SABC= BCAD=82=8;当x=10时,如图,AC=6,BC=8,AB=10,AC2+BC2=AB2,ABC是直角三角形,C=90,SABC=BCAC=86=24.该三角形的面积是:24或8.故选B.【点睛】此题考查勾股定理的逆定理,解一元二次方程-因式分解法,勾股定理,解题关键在于利用勾股定理进行计算.3、A【分析】利用二次函数图象上点的坐标特征求出抛物线与x轴交点的横坐标,由阴影部分的面积等于矩形OABC的面积可求出AB的长度,再利用平移的性质“左加右减,上加下减”,即可求出抛物线的函数表达式【详解】
11、当y0时,有(x2)220,解得:x10,x21,OA1S阴影OAAB16,AB1,抛物线的函数表达式为y(x2)221故选A【点睛】本题考查了抛物线与x轴的交点、矩形的面积以及二次函数图形与几何变换,观察图形,找出阴影部分的面积等于矩形OABC的面积是解题的关键4、D【分析】根据一元二次方程的定义逐个判断即可【详解】解:A、是关于x的一元一次方程,不是一元二次方程,故本选项不符合题意;B、是关于y的一元二次方程,不是关于x的一元二次方程,故本选项不符合题意;C、只有当a0时,是关于x的一元二次方程,故本选项不符合题意;D、是关于x的一元二次方程,故本选项符合题意;故选:D【点睛】本题考查了一
12、元二次方程的定义,能熟记一元二次方程的定义的内容是解此题的关键5、A【解析】本题的等量关系是:木长绳长,绳长木长,据此可列方程组即可.【详解】设木条长为尺,绳子长为尺,根据题意可得:.故选:.【点睛】本题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的二元一次方程组.6、D【分析】要求EP+CP的最小值,需考虑通过作辅助线转化EP,CP的值,从而找出其最小值求解【详解】连接BE,与AD交于点GABC是等边三角形,AD是BC边上的中线,ADBC,AD是BC的垂直平分线,点C关于AD的对称点为点B,BE就是EP+CP的最小值G点就是所求点,即点G与点P重合,等边ABC的边长为8
13、,E为AC的中点,CE=4,BEAC,在直角BEC中,BE=,EP+CP的最小值为,故选D.【点睛】此题考查轴对称-最短路线问题,等边三角形的对称性、三线合一的性质以及勾股定理的运用,熟练掌握,即可解题.7、C【分析】根据概率的意义对A进行判断,根据必然事件、随机事件的定义对B、C进行判断,根据可能性的大小对D进行判断【详解】A、某种游戏活动的中奖率是30%,若参加这种活动10次不一定有3次中奖,所以该选项错误B、可能性很大的事件在一次实验中不一定必然发生,所以该选项错误;C、相等的圆心角所对的弧相等是随机事件,所以该选项正确;D、图钉上下不一样,所以钉尖朝上的概率和钉尖着地的概率不相同,所以
14、该选项错误;故选:C【点睛】此题考查了概率的意义、比较可能性大小、必然事件以及随机事件,正确理解含义是解决本题的关键8、A【分析】利用弧长公式计算出扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长即是扇形的弧长.【详解】解:扇形的弧长,以此扇形为侧面的圆锥的底面圆的周长为故选:A【点睛】本题考查了弧长的计算:.9、A【解析】A=90,AC=5,AB=12,BC=13,cosC=,故选A.10、D【解析】试题解析:故选D.11、C【分析】根据题意写出t与v的关系式判断即可.【详解】根据题意写出t与v的关系式为,故选C.【点睛】本题是对反比例函数解析式和图像的考查,准确写出解析式并判断其图像是解决本
15、题的关键.12、A【分析】首先根据抛物线与坐标轴的交点确定对称轴,然后根据其开口方向确定当x满足什么条件数值y随x值的增大而减小即可【详解】二次函数的图象与x轴的交点A、B的横坐标分别为1、3,AB中点坐标为(1,0),而点A与点B是抛物线上的对称点,抛物线的对称轴为直线x1,开口向上,当x1时,y随着x的增大而减小,故选:A【点睛】本题考查了二次函数的性质,掌握二次函数的性质以及判断方法是解题的关键二、填空题(每题4分,共24分)13、x1=0,x2=4【分析】用因式分解法求解即可.【详解】,x(x-4)=0,x1=0,x2=4.故答案为x1=0,x2=4.【点睛】本题考查了一元二次方程的解
16、法,常用的方法由直接开平方法、配方法、因式分解法、求根公式法,灵活选择合适的方法是解答本题的关键.14、【分析】由勾股定理求出的长,再证明四边形是矩形,可得,根据垂线段最短和三角形面积即可解决问题【详解】解:,且,四边形是矩形.如图,连接AD,则,当时,的值最小,此时,的面积,的最小值为;故答案为:【点睛】本题考查了矩形的判定和性质、勾股定理、三角形面积、垂线段最短等知识,解题的关键是熟练掌握基本知识,本题属于中考常考题型15、2x1【分析】直接利用函数图象结合其交点坐标得出不等式ax2bx+c的解集即可;【详解】解:如图所示:抛物线yax2与直线ybx+c的两个交点坐标分别为A(2,4),B
17、(1,1),不等式ax2bx+c的解集,即一次函数在二次函数图象上方时,得出x的取值范围为:2x1.故答案为:2x1.【点睛】本题主要考查了二次函数与不等式(组),掌握二次函数的性质和不等式的解是解题的关键.16、4【分析】由BCAC,AB10,BCAD6,由勾股定理求得AC的长,得出OA长,然后由勾股定理求得OB的长即可【详解】解:四边形ABCD是平行四边形,BCAD6,OBOD,OAOC,ACBC,AC8,OC4,OB2,BD2OB4故答案为:4【点睛】此题考查了平行四边形的性质以及勾股定理此题难度适中,注意掌握数形结合思想的应用17、10【分析】延长AG交BC于点H, 由G是重心,推出
18、,再由得出,从而可求AD,DG,AG的长度,进而答案可得.【详解】延长AG交BC于点HG是重心, ,AH是斜边中线, 的周长等于 故答案为:10【点睛】本题主要考查三角形重心的性质及平行线分线段成比例,掌握三角形重心的性质是解题的关键.18、【分析】根据相似三角形对应边成比例即可求得答案.【详解】, ,解得:故答案为:【点睛】本题考查了相似三角形的性质,找准对应边是解题的关键.三、解答题(共78分)19、(1);(2)不公平,理由见解析【分析】(1)由标有数字1、2、1的1个转盘中,奇数的有1、1这2个,利用概率公式计算可得;(2)根据题意列表得出所有等可能的情况,得出这两个数字之和是奇数与偶
19、数的情况,再根据概率公式即可得出答案【详解】解:(1)在标有数字1、2、1的1个转盘中,奇数的有1、1这2个,指针所指扇形中的数字是奇数的概率为,故答案为:;(2)不公平,理由如下:列表如下:121121421451456由表可知,所有等可能的情况数为9种,其中两次指针所指数字之和为奇数的有4种结果,和为偶数的有5种结果,所以小明获胜的概率为,小颖获胜的概率为,由知此游戏不公平【点睛】此题考查的是求概率问题,掌握列表法和概率公式是解决此题的关键20、选择A转盘理由见解析【解析】试题分析:由题意可以画出树状图,然后根据树状图求得到所有等可能的结果,找全满足条件的所有情况,再利用概率公式即可求得答
20、案试题解析:选择A转盘画树状图得:共有9种等可能的结果,A大于B的有5种情况,A小于B的有4种情况,P(A大于B)=,P(A小于B)=,选择A转盘考点:列表法与树状图法求概率21、(1)AB:;CD: ;(2)有效时间为2分钟 .【解析】分析:(1)、利用待定系数法分别求出函数解析式;(2)、将y=40分别代入两个函数解析式分别求出x的值,然后进行做差得出答案详解:(1)设线段AB所在的直线的解析式为y1=k1x+30, 把B(10,2)代入得,k1=2,AB解析式为:y1=2x+30(0x10) 设C、D所在双曲线的解析式为y2=,把C(44,2)代入得,k2=2200, 曲线CD的解析式为
21、:y2=(x44);(2)将y=40代入y1=2x+30得:2x+30=40,解得:x=5,将y=40代入y2=得:x=1 15=2所以完成一份数学家庭作业的高效时间是2分钟点睛:本题主要考查的就是函数图像的基本应用问题,属于基础题型求函数解析式的时候我们用的就是待定系数法,在设函数关系式的时候一定要正确22、(1)无人机的高约为19m;(2)无人机的平均速度约为5米/秒或26米/秒【分析】(1)如图,过点作,垂足为点,设,则解直角三角形即可得到结论;(2)过点作,垂足为点,解直角三角形即可得到结论【详解】解: (1)如图,过点作,垂足为点 , 设,则在RtACH中, 解得: 答:计算得到的无
22、人机的高约为19m(2)过点F作,垂足为点 在RtAGF中,FG=CH=18,又 或.答:计算得到的无人机的平均速度约为5米/秒或26米/秒【点睛】本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型23、(1)P =36;(2)P=30【分析】(1)连接OC,首先根据切线的性质得到OCP=90,利用CAB=27得到COB=2CAB=54,然后利用直角三角形两锐角互余即可求得答案;(2)根据E为AC的中点得到ODAC,从而求得AOE=90EAO=80,然后利用圆周角定理求得ACD=AOD=40,最后利用三角形的外角的性质求解即可【详解】解:(1)
23、如图,连接OC,O与PC相切于点C,OCPC,即OCP=90,CAB=27,COB=2CAB=54,在RtAOE中,P+COP=90,P=90COP=36;(2)E为AC的中点,ODAC,即AEO=90,在RtAOE中,由EAO=10,得AOE=90EAO=80,ACD=AOD=40,ACD是ACP的一个外角,P=ACDA=4010=30【点睛】本题考查切线的性质24、(1)证明见解析,存在,;(2)或【分析】(1)证明A+2ABD=90即可解决问题如图1中,假设在AC边设上存在点E(异于点D),使得ABE是“类直角三角形”证明ABCBEC,可得,由此构建方程即可解决问题(2)分两种情形:如图
24、2中,当ABC+2C=90时,作点D关于直线AB的对称点F,连接FA,FB则点F在O上,且DBF=DOA如图3中,由可知,点C,A,F共线,当点E与D共线时,由对称性可知,BA平分FBC,可证C+2ABC=90,利用相似三角形的性质构建方程即可解决问题【详解】(1)证明:如图1中,是的角平分线,为“类直角三角形”如图1中,假设在边设上存在点(异于点),使得是“类直角三角形”在中,(2)是直径,如图2中,当时,作点关于直线的对称点,连接,则点在上,且,且,共线,即如图3中,由可知,点,共线,当点与共线时,由对称性可知,平分,即,且中解得综上所述,当是“类直角三角形”时,的长为或【点睛】本题考查了
25、相似三角形的判定和性质,“类直角三角形”的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考压轴题25、(1)证明见详解;(2).【分析】(1)连接AE,求出EAD+AFE=90,推出BCE=BFC,EAD=ACE,求出BCE+ACE=90,根据切线的判定推出即可(2)根据AC=4,=,求出BC=3,AB=5,BF=3,AF=2,根据EAD=ACE,E=E证AEFCEA,推出EC=2EA,设EA=x,EC=2x,由勾股定理得出,求出即可【详解】(1)答:BC与O相切证明:连接AE,AC是O的直径E=90,EAD+AFE=90,BF=BC,BC
26、E=BFC=AFE,E为弧AD中点,EAD=ACE,BCE+ACE=EAD+AFE=90,ACBC,AC为直径,BC是O的切线(2)解:O的半为2,AC=4,=BC=3,AB=5,BF=3,AF=5-3=2,EAD=ACE,E=E,AEFCEA,EC=2EA,设EA=x,则有EC=2x,由勾股定理得:, (负数舍去),即.【点睛】本题考查了切线的判定,等腰三角形的性质,勾股定理,相似三角形的性质和判定的应用,主要考查学生的推理能力26、(1)x1=2,x2=;(2),【分析】(1)先移项,再分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先求出b2-4ac的值,再代入公式求出即可【详解】解:(1)3x(x-2)=4(x-2),3x(x-2)-4(x-2)=0,(x-2)(3x-4)=0,x-2=0,3x-4=0,x1=2,x2=;(2)2x2-4x+1=0,b2-4ac=42-421=8,【点睛】本题考查了解一元二次方程,能够选择适当的方法解一元二次方程是解此题的关键