收藏 分销(赏)

小学奥数关于数的整除规律.doc

上传人:w****g 文档编号:6509094 上传时间:2024-12-10 格式:DOC 页数:11 大小:696.91KB
下载 相关 举报
小学奥数关于数的整除规律.doc_第1页
第1页 / 共11页
小学奥数关于数的整除规律.doc_第2页
第2页 / 共11页
点击查看更多>>
资源描述
数的整除规律 1、一个数的个位上是2、4、6、8、0的数都能被2整除。 2、一个数的数字之和能被3或9整除,这个数就能被3或9整除。 3、这一个数的末两位如果能被4或者25整除,这个数就能被4或者25整除。 4、个位上是0或5的数都能被5整除。 5.这个数的末位数与末三位以前的数字所组成的数之差能被7,11或13整除,则原数能被7,11或13整除。 6.这个数的末三位如果能被8或者125整除,这个数就一定能被8或者125整除。 7.若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。 能被2、3、4、5、6、7、8、9 等数整除的数的特征 性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。 性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。 能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除 能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除 能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除 能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除 能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除 能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。 能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。 能被9整除的数,各个数位上的数字和能被9整除,那么这个数能被9整除 能被10整除的数,如果一个数既能被2整除又能被5整除,那么这个数能被10整除(即个位数为零) 能被11整除的数,奇数位(从左往右数)上的数字和与偶数位上的数字和之差(大数减小数)能被11整除,则该数就能被11整除。 11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! 能被12整除的数,若一个整数能被3和4整除,则这个数能被12整除 能被13整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除。如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 能被17整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除。如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。    另一种方法:若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除 能被19整除的数,若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除。如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。 另一种方法:若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除 能被23整除的数,若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除 能被25整除的数,十位和个位所组成的两位数能被25整除。 能被125整除的数,百位、十位和个位所组成的三位数能被125整除。 (1)1与0的特性: 1是任何整数的约数,即对于任何整数a,总有1|a. 0是任何非零整数的倍数,a≠0,a为整数,则a|0. (2)若一个整数的末位是0、2、4、6或8,则这个数能被2整除. (3)若一个整数的数字和能被3整除,则这个整数能被3整除. (4) 若一个整数的末尾两位数能被4整除,则这个数能被4整除. (5)若一个整数的末位是0或5,则这个数能被5整除. (6)若一个整数能被2和3整除,则这个数能被6整除. (7)若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除.如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止.例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7 的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 ,59-5×2=49,所以6139是7的倍数,余类推. (8)若一个整数的未尾三位数能被8整除,则这个数能被8整除. (9)若一个整数的数字和能被9整除,则这个整数能被9整除. (10)若一个整数的末位是0,则这个数能被10整除. (11)若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除.11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1! (12)若一个整数能被3和4整除,则这个数能被12整除. (13)若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果差是13的倍数,则原数能被13整除.如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止. (14)若一个整数的个位数字截去,再从余下的数中,减去个位数的5倍,如果差是17的倍数,则原数能被17整除.如果差太大或心算不易看出是否17的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止. (15)若一个整数的个位数字截去,再从余下的数中,加上个位数的2倍,如果差是19的倍数,则原数能被19整除.如果差太大或心算不易看出是否19的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止. (16)若一个整数的末三位与3倍的前面的隔出数的差能被17整除,则这个数能被17整除. (17)若一个整数的末三位与7倍的前面的隔出数的差能被19整除,则这个数能被19整除. (18)若一个整数的末四位与前面5倍的隔出数的差能被23(或29)整除,则这个数能被23整除 之前有人回答过了.看看下面的参考资料链接 两位截断法是判断一个多位数是不是99的倍数或能不能被99整除的一种方法,你已经知道并且会用了,你现在的问题是不是怎样倒着应用?如20□□08能被99整除,求这个数是多少?这个题可以这样做,20+8=28 28+71=99 所以 □□=71 所求之数为 207108 也可以□□=99-28=71
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服