资源描述
作业的正文内容:
创设问题情境,激发学生求知欲望:
有疑设问是一切知识的起点和追求知识的动力。任何人对未知的事物都充满好奇心,而青少年在这方面表现更为强烈,教师可利用学生的好奇心这一特点,设计适合他们心理特点的问题情境,引导他们主动思索、尝试,释疑解惑。但释疑不能操之过急,越俎代庖,应留给学生思考的余地,通过适当地点拨,让学生积极思维而达到解疑之目的。这样,思维过程才能日臻缜密,知识掌握才能更趋牢固。例如:在“简单的线性规划”教学中,我是先让学生复习点集{(x,y)|x+y-1=0}表示经过点(0,1)和(1,0)的一条直线,在此基础上,提出以下问题:
⑴点集{(x,y)|x+y-1>0}在平面直角坐标系中表示什么图形?
⑵点集{(x,y)|x+y-1<0=在平面直角坐标系中又表示什么图形?
尝试:在平面直角坐标系中,所有的点被直线x+y-1=0分成三类:一类是在直线x+y-1=0上,一类在直线x+y-1=0上方的平面区域内,一类在直线x+y-1=0下方的区域内。对于任意一个点(x,y),把它的坐标代入x+y-1式子中,可得一个实数或等于零,或大于零,或小于零。此时可以引导学生探讨在什么情况下,点(x,y)在直线上,在直线右上方,在直线的左下方?
猜测:对于直线x+y-1=0右上方的点(x,y),有x+y-1>0成立;对于直线x+y-1=0左下方的点(x,y),有x+y-1<0成立。
展开阅读全文