资源描述
教学设计《同位角、内错角、同旁内角》
知识教学点 1.理解同位角、内错角、同旁内角的概念. 2.结合图形识别同位角、内错角、同旁内角.
能力训练点 1.通过变式图形的识图训练,培养学生的识图能力. 2.通过例题口答“为什么”,培养学生的推理能力.
德育渗透点 从复杂图形分解为基本图形的过程中,渗透化繁为简,化难为易的化归思想;从图形变化过程中,培养学生辩证唯物主义观点.
美育渗透点 通过“三线八角”基本图形,使学生认识几何图形的位置美.
重点、难点、疑点及解决办法 (一)生点 同位角、内错角、同旁内角的概念. (二)难点 在较复杂的图形中辨认同位角、内错角、同旁内角. (三)疑点 正确理解新概念. (四)解决办法 引导学生讨论归纳三类角的特征,并以练习加以巩固.
课时安排 1课时 一、教具学具准备 投影仪、三角板、自制胶片.
师生互动活动设计 1.通过一组练习创设情境,复习基础知识,引入新课. 2.通过学生阅读书本,教师设问引导,练习巩固讲授新课. 3.通过师生互答完成课堂小结.
教学步骤 (一)明确目标 使学生掌握“三线八角”,并能在图形中进行辨识. (二)整体感知 以复习旧知创设情境引入课题,以指导阅读、设计问题、小组讨论学习新知,以变式练习巩固新知. (三)教学过程 创设情境,复习导入 回答下列问题: 1.如图,∠1与∠3,∠2与∠4是什么角?它们的大小有什么关系? 2.如图,∠1与∠2,∠l与∠4是什么角?它们有什么关系? 3.如图,三条直线AB、CD、EF交于一点O,则图中有几对对顶角,有几对邻补角? 4.如图,三条直线AB、CD、EF两两相交,则图中有几对对项角,有几对邻补角? 5.三条直线相交除上述两种情况外,还有其他相交的情形吗? 学生答后,教师出示复合投影片1,在(1、2题的)图上添加一条直线CD,使CD与EF相交于某一点(如图),直线AB、CD都与EF相交或者说两条直线AB、CD被第三条直线EF所截,这样图中就构成八个角,在这八个角中,有公共顶点的两个角的关系前面已经学过,今天,我们来研究那些没有公共顶点的两个角的关系. 【板书】 2.3同位角、内错角、同旁内角 尝试指导,学习新知 1.学生自己尝试学习,阅读课本第67页例题前的内容. 2.设计以下问题,帮助学生正确理解概念. (1)同位角:∠4和∠8与截线及两条被截直线在位置上有什么特点?图中还有其他同位角吗? (2)内错角:∠3和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他内错角吗? (3)同旁内角:∠4和∠5与截线及两条被截直线在位置上有什么特点?图中还有其他同分内角吗? (4)同位角和同分内角在位置上有什么相同点和不同点? 内错角和同旁内角在位置上有什么相同点和不同点? (5)这三类角的共同特征是什么? 3.对上述问题以小组为单位展开讨论,然后学生间互相评议. 4.教师对学生讨论过程中所发表的意见进行评判,归纳总结. 在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,因此在“三线八角”的图形中的主线是截线,抓住了截线,再利用图形结构特征(F、Z、U)判断问题就迎刃而解. 【教法说明】让学生自己尝试学习,可以充分发挥学生的积极性、主动性和创造性,几个问题的设计目的是深化教学重点,使学生看书更具有针对性,避免盲目性.学生互相评价可以增加讨论的深度,教师最后评价可以统一学生的观点,学生在议议评评的过程中明理、增智,培养了能力. 投影显示(投影片2) 例题 如图,直线DE、BC被直线AB所截,(1)∠l与∠2,∠1与∠3,∠1与∠4各是什么关系的角? (2)如果∠1=∠4,那么∠1和∠2相等吗?∠1和∠3互补吗?为什么? (四)总结、扩展 1.本节研究了一条直线分别和两条直线相交,所得八个角的位置关系,掌握辨别这些角位置关系的关键是分清哪条线是截线,哪些线是被截直线,在截线的同旁找同位角和同旁内角,在截线的不同旁找内错角,只要抓住三线中的主线——截线,就能正确识别这三类角. 2.相交直线 3.教师指着图中的一条被截直线,问:“这条直线绕着与截线着与截线的交点旋转,当同位角相等时,两条被截直线是什么关系?” 【教法说明】将所学知识进行归纳总结,加强了知识问的联系,充分体现了所学知识的系统性,最后用是合式小结.可使学生课后自觉地去看预习,寻找答案。系统性,最后用悬念式小结,可使学生课后自觉地去看书预习,寻找答案。
展开阅读全文