资源描述
2022-2023学年九上数学期末模拟试卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)
1.用配方法将方程变形为,则的值是( )
A.4 B.5 C.6 D.7
2.如图,在△ABC中,D、E分别为AB、AC边上的点,DE∥BC,BE与CD相交于点F,则下列结论一定正确的是( )
A. B. C. D.
3.如图,矩形ABCD中,AB=4,AD=8,E为BC的中点,F为DE上一动点,P为AF中点,连接PC,则PC的最小值是( )
A.4 B.8 C.2 D.4
4.如图,现有两个相同的转盘,其中一个分为红、黄两个相等的区域,另一个分为红、黄、蓝三个相等的区域,随即转动两个转盘,转盘停止后指针指向相同颜色的概率为( )
A. B. C. D.
5.已知点关于轴的对称点在反比例函数的图像上,则实数的值为( )
A.-3 B. C. D.3
6.如图,P是等腰直角△ABC外一点,把BP绕点B顺时针旋转90°到BP′,使点P′在△ABC内,已知∠AP′B=135°,若连接P′C,P′A:P′C=1:4,则P′A:P′B=( )
A.1:4 B.1:5 C.2: D.1:
7.给出下列四个函数:①y=﹣x;②y=x;③y=;④y=x1.x<0时,y随x的增大而减小的函数有( )
A.1个 B.1个 C.3个 D.4个
8.若反比例函数的图象经过点,则这个函数的图象一定还经过点( )
A. B. C. D.
9.已知如图,中,,,,边的垂直平分线交于点,交于点,则的长是( ).
A. B. C.4 D.6
10.如图,△ABC中,∠A=78°,AB=4,AC=1.将△ABC沿图示中的虚线剪开,剪下的阴影三角形与原三角形不相似的是( )
A. B. C. D.
11.已知的图象如图,则和的图象为( )
A. B. C. D.
12.在直角坐标系中,点关于坐标原点的对称点的坐标为( )
A. B. C. D.
二、填空题(每题4分,共24分)
13.已知关于x方程x2﹣3x+a=0有一个根为1,则方程的另一个根为_____.
14.如图在Rt△OAB中∠AOB=20°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=____.
15.函数沿直线翻折所得函数解析式为_____________.
16.如图,将一张画有内切圆⊙P的直角三角形纸片AOB置于平面直角坐标系中,已知点A(0,3),B(4,0),⊙P与三角形各边相切的切点分别为D、E、F. 将直角三角形纸片绕其右下角的顶点依次按顺时针方向旋转,第一次旋转至图①位置,第二次旋转至图②位置,…,则直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标为____.
17.用一块圆心角为120°的扇形铁皮,围成一个底面直径为10cm的圆锥形工件的侧面,那么这个圆锥的高是_____cm.
18.如图,将一张正方形纸片,依次沿着折痕,(其中)向上翻折两次,形成“小船”的图样.若,四边形与的周长差为,则正方形的周长为______.
三、解答题(共78分)
19.(8分)近几年购物的支付方式日益增多,某数学兴趣小组就此进行了抽样调查.调查结果显示,支付方式有:A微信、B支付宝、C现金、D其他,该小组对某超市一天内购买者的支付方式进行调查统计,得到如下两幅不完整的统计图.
请你根据统计图提供的信息,解答下列问题:
(1)本次一共调查了多少名购买者?
(2)请补全条形统计图;在扇形统计图中A种支付方式所对应的圆心角为 度.
(3)若该超市这一周内有1600名购买者,请你估计使用A和B两种支付方式的购买者共有多少名?
20.(8分)(1)如图1,已知∠ACB=∠DCE=90°,AC=BC=6,CD=CE,AE=3,∠CAE=45°,求AD的长.
(2)如图2,已知∠ACB=∠DCE=90°,∠ABC=∠CED=∠CAE=30°,AC=3,AE=8,求AD的长.
21.(8分)在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.
(1)若花园的面积为192m2, 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求花园面积S的最大值.
22.(10分)如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣2,1),B(﹣1,4),C(﹣3,2),以原点O为位似中心,△ABC与△A1B1C1位似比为1:2,在y轴的左侧,请画出△ABC放大后的图形△A1B1C1.
23.(10分)如图,△ABC是边长为2的等边三角形,点D与点B分别位于直线AC的两侧,且AD=AC, 联结BD、CD,BD交直线AC于点E.
(1)当∠CAD=90°时,求线段AE的长.
(2)过点A作AH⊥CD,垂足为点H,直线AH交BD于点F,
①当∠CAD<120°时,设,(其中表示△BCE的面积,表示△AEF的面积),求y关于x的函数关系式,并写出x的取值范围;
②当时,请直接写出线段AE的长.
24.(10分)如图,在平面直角坐标系中,矩形ABCD的边CD在y轴上,点A在反比例函数的图象上,点B在反比例函数的图象上,AB交x轴与点E,.
(1)求k的值;
(2)若,点P为y轴上一动点,当的值最小时,求点P的坐标.
25.(12分)一艘运沙船装载着5000m3沙子,到达目的地后开始卸沙,设平均卸沙速度为v(单位:m3/小时),卸沙所需的时间为t(单位:小时).
(1)求v关于t的函数表达式,并用列表描点法画出函数的图象;
(2)若要求在20小时至25小时内(含20小时和25小时)卸完全部沙子,求卸沙的速度范围.
26.如图1,在△ABC中,∠BAC=90°,AB=AC,D为边AB上一点,连接CD,在线段CD上取一点E,以AE为直角边作等腰直角△AEF,使∠EAF=90°,连接BF交CD的延长线于点P.
(1)探索:CE与BF有何数量关系和位置关系?并说明理由;
(2)如图2,若AB=2,AE=1,把△AEF绕点A顺时针旋转至△AE'F′,当∠E′AC=60°时,求BF′的长.
参考答案
一、选择题(每题4分,共48分)
1、B
【分析】将方程用配方法变形,即可得出m的值.
【详解】解:,
配方得:,
即,
则m=5.
故选B.
【点睛】
本题考查了配方法,解题的关键是利用完全平方公式对方程进行变形.
2、A
【分析】根据平行线分线段成比例定理与相似三角形的性质,逐项判断即得答案.
【详解】解:A、∵DE∥BC,∴,故本选项正确;
B、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误;
C、∵DE∥BC,∴△ADE∽△ABC,∴,故本选项错误;
D、∵DE∥BC,∴△DEF∽△CBF,∴,故本选项错误.
故选:A.
【点睛】
本题考查了平行线分线段成比例定理和相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解答的关键.
3、D
【分析】根据中位线定理可得出点点P的运动轨迹是线段P1P2,再根据垂线段最短可得当CP⊥P1P2时,PC取得最小值;由矩形的性质以及已知的数据即可知CP1⊥P1P2,故CP的最小值为CP1的长,由勾股定理求解即可.
【详解】解:如图:
当点F与点D重合时,点P在P1处,AP1=DP1,
当点F与点E重合时,点P在P2处,EP2=AP2,
∴P1P2∥DE且P1P2=DE
当点F在ED上除点D、E的位置处时,有AP=FP
由中位线定理可知:P1P∥DF且P1P=DF
∴点P的运动轨迹是线段P1P2,
∴当CP⊥P1P2时,PC取得最小值
∵矩形ABCD中,AB=4,AD=8,E为BC的中点,
∴△ABE、△CDE、△DCP1为等腰直角三角形,DP1=2
∴∠BAE=∠DAE=∠DP1C=45°,∠AED=90°
∴∠AP2P1=90°
∴∠AP1P2=45°
∴∠P2P1C=90°,即CP1⊥P1P2,
∴CP的最小值为CP1的长
在等腰直角CDP1中,DP1=CD=4,
∴CP1=4
∴PB的最小值是4.
故选:D.
【点睛】
本题考查轨迹问题、矩形的性质等知识,解题的关键是学会利用特殊位置解决问题,有难度.
4、A
【解析】先画树状图展示所有6种等可能的结果数,找出停止后指针指向相同颜色的结果数,然后根据概率公式计算.
【详解】画树状图如下:
由树状图知,共有6种等可能结果,其中转盘停止后指针指向相同颜色的有2种结果,
所以转盘停止后指针指向相同颜色的概率为=,
故选:A.
【点睛】
本题考查了列表法或树状图法:通过列表法或树状图法展示所有等可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式求出事件A或B的概率.
5、A
【分析】先根据关于x轴对称的点的坐标特征确定A'的坐标为,然后把A′的坐标代入中即可得到k的值.
【详解】解:点关于x轴的对称点A'的坐标为,
把A′代入,
得k=-1×1=-1.
故选:A.
【点睛】
本题考查了反比例函数图象上点的坐标特征:反比例函数(k为常数,k≠0)的图象是双曲线,图象上的点(x,y)的横纵坐标的积是定值k,即xy=k.
6、C
【分析】连接AP,根据同角的余角相等可得∠ABP=∠CBP′,然后利用“边角边”证明△ABP和△CBP′全等,根据全等三角形对应边相等可得AP=CP′,连接PP′,根据旋转的性质可得△PBP′是等腰直角三角形,然后求出∠AP′P是直角,再利用勾股定理用AP′表示出PP′,又等腰直角三角形的斜边等于直角边的倍,代入整理即可得解.
【详解】解:如图,连接AP,
∵BP绕点B顺时针旋转90°到BP′,
∴BP=BP′,∠ABP+∠ABP′=90°,
又∵△ABC是等腰直角三角形,
∴AB=BC,∠CBP′+∠ABP′=90°,
∴∠ABP=∠CBP′,
在△ABP和△CBP′中,
∵,
∴△ABP≌△CBP′(SAS),
∴AP=P′C,
∵P′A:P′C=1:4,
∴AP=4P′A,
连接PP′,则△PBP′是等腰直角三角形,
∴∠BP′P=45°,PP′=PB,
∵∠AP′B=135°,
∴∠AP′P=135°﹣45°=90°,
∴△APP′是直角三角形,
设P′A=x,则AP=4x,
∴PP'=,
∴P'B=PB=,
∴P′A:P′B=2:,
故选:C.
【点睛】
本题主要考查的是全等三角形的性质以及判定,掌握全等三角形的五种判定方法的解本题的关键.
7、C
【解析】解: 当x<0时,①y=−x,③,④ y随x的增大而减小;
②y=x,y随x的增大而增大.
故选C.
8、A
【分析】根据反比例函数的定义,得,分别判断各点的乘积是否等于,即可得到答案.
【详解】解:∵反比例函数的图象经过点,
∴;
∵,故A符合题意;
∵,,,故B、C、D不符合题意;
故选:A.
【点睛】
本题考查了反比例函数的定义,解题的关键是熟记定义,熟练掌握.
9、B
【分析】根据勾股定理求出BC,根据线段垂直平分线性质和勾股定理可求AE.
【详解】因为中,,,,
所以BC=
因为的垂直平分线交于点,
所以AE=EC
设AE=x,则BE=8-x,EC=x
在Rt△BCE中,由BE2+BC2=EC2可得
x2+(8-x)2=62
解得x=.即AE=
故选:B
【点睛】
考核知识点:勾股定理,线段垂直平分线.根据勾股定理求出相应线段是关键.
10、C
【解析】试题解析:A、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
B、阴影部分的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;
C、两三角形的对应边不成比例,故两三角形不相似,故本选项正确.
D、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误;
故选C.
点睛:相似三角形的判定:两组角对应相等,两个三角形相似.
两组边对应成比例及其夹角相等,两个三角形相似.
三组边对应成比例,两个三角形相似.
11、C
【解析】根据二次函数y=ax2+bx+c(a≠0)的图象可以得到a<0,b>0,c<0,由此可以判定y=ax+b经过一、二、四象限,双曲线在二、四象限.
【详解】根据二次函数y=ax2+bx+c(a≠0)的图象,
可得a<0,b>0,c<0,
∴y=ax+b过一、二、四象限,
双曲线在二、四象限,
∴C是正确的.
故选C.
【点睛】
此题考查一次函数,二次函数,反比例函数中系数及常数项与图象位置之间关系.
12、D
【分析】根据关于原点对称的点的坐标特征:横、纵坐标都相反,进行判断即可.
【详解】点A(-1,2)关于原点的对称点的坐标为(1,-2).
故选:D.
【点睛】
本题考查点的坐标特征,熟记特殊点的坐标特征是关键.
二、填空题(每题4分,共24分)
13、1
【解析】分析:设方程的另一个根为m,根据两根之和等于-,即可得出关于m的一元一次方程,解之即可得出结论.
详解:设方程的另一个根为m,
根据题意得:1+m=3,
解得:m=1.
故答案为1.
点睛:本题考查了根与系数的关系,牢记两根之和等于-是解题的关键.
14、80°.
【分析】由将△OAB绕点O逆时针旋转100°得到△OA1B1,可求得∠A1OA的度数,继而求得答案.
【详解】∵将△OAB绕点O逆时针旋转100°得到△OA1B1,
∴∠A1OA=100°,
∵∠AOB=20°,
∴∠A1OB=∠A1OA﹣∠AOB=80°.
故答案为:80°.
【点睛】
此题考查了旋转的性质.注意找到旋转角是解此题的关键.
15、
【解析】函数沿直线翻折所得函数图像开口向下,只要根据轴对称的性质求出对称后的顶点坐标即可.
【详解】∵=(x-1)2+3,
∴其顶点坐标是(1,3),
∵(1,3)关于直线的点的坐标是(1,-1),
∴所得函数解析式为(x-1)2-1.
故答案为:.
【点睛】
本题考查了二次函数的轴对称变换,其形状不变,但开口方向相反,因此a值为原来的相反数,顶点位置改变,只要根据轴对称的点坐标特征求出新的顶点坐标,即可确定解析式.
16、 (8075,1)
【分析】旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3,根据已知A(0,3),B(4,0),可求得AB长度和三角形内切圆的半径,依次求出OE1,OE2,OE3,OE4,OE5,OE6的长,找到规律,求得OE2018的长,即可求得直角三角形纸片旋转2018次后,它的内切圆圆心P的坐标.
【详解】如图所示,旋转后的三角形内切圆的圆心分别为P1,P2,P3,过圆心作垂直于x轴,分别交x轴于点为E1,E2,E3
设三角形内切圆的半径为r
∵△AOB是直角三角形,A(0,3),B(4,0)
∴
∵⊙P是△AOB的内切圆
∴
即
∴r=1
∴BE=BF=OB-OE=4-1=3
∵△BO1A1是△AOB绕其B点按顺时针方向旋转得到
∴BE1=BF=3
∴OE1=4+3
∵A1E2=3-1=2
∴OE2=4+5+2
∴OE3=4+5+3+1
同理可推得OE4=4+5+3+4+3,OE5=4+5+3+4+5+2,OE6=4+5+3+4+5+3+1
2018÷3=6722
OE2018=672×(4+5+3)+(4+5+2)=8075
三角形在翻折后内切圆的纵坐标不变
∴P2018(8075,1)
故答案为:(8075,1)
【点睛】
本题是坐标的规律题,考查了图形翻折的性质,翻转后图形对应的边和角不变,本题应用了三角形内切圆的性质,及三角形内切圆半径的求法,用勾股定理解直角三角形等知识.
17、10
【分析】求得圆锥的母线的长利用勾股定理求得圆锥的高即可.
【详解】设圆锥的母线长为l,则=10π,
解得:l=15,
∴圆锥的高为:=10,
故答案为:10.
【点睛】
考查了圆锥的计算,解题的关键是了解圆锥的底面周长等于圆锥的侧面扇形的弧长,难度不大.
18、1
【分析】由正方形的性质得出△ABD是等腰直角三角形,由EF∥BD,得出△AEF是等腰直角三角形,由折叠的性质得△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,则GF=DF=BE=EH=1,设AB=x,则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),由四边形BEFD与△AHG的周长差为5-2列出方程解得x=4,即可得出结果.
【详解】∵四边形ABCD是正方形,
∴△ABD是等腰直角三角形,
∵EF∥BD,
∴△AEF是等腰直角三角形,
由折叠的性质得:△AHG是等腰直角三角形,△BEH与△DFG是全等的等腰直角三角形,
∴GF=DF=BE=EH=1,
设AB=x,
则BD=x,EF=(x-1),AH=AG=x-2,HG=(x-2),
∵四边形BEFD与△AHG的周长差为5-2,
∴x+(x-1)+2-[2(x-2)+(x-2)]=5-2,
解得:x=4,
∴正方形ABCD的周长为:4×4=1,
故答案为:1.
【点睛】
本题考查了折叠的性质、正方形的性质、等腰直角三角形的判定与性质等知识,熟练掌握折叠与正方形的性质以及等腰直角三角形的性质是解题的关键.
三、解答题(共78分)
19、(1)本次一共调查了200名购买者;(2)补全的条形统计图见解析,A种支付方式所对应的圆心角为108;(3)使用A和B两种支付方式的购买者共有928名.
【解析】分析:(1)根据B的数量和所占的百分比可以求得本次调查的购买者的人数;
(2)根据统计图中的数据可以求得选择A和D的人数,从而可以将条形统计图补充完整,求得在扇形统计图中A种支付方式所对应的圆心角的度数;
(3)根据统计图中的数据可以计算出使用A和B两种支付方式的购买者共有多少名.
详解:(1)56÷28%=200,
即本次一共调查了200名购买者;
(2)D方式支付的有:200×20%=40(人),
A方式支付的有:200-56-44-40=60(人),
补全的条形统计图如图所示,
在扇形统计图中A种支付方式所对应的圆心角为:360°×=108°,
(3)1600×=928(名),
答:使用A和B两种支付方式的购买者共有928名.
点睛:本题考查扇形统计图、条形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.
20、(1)AD=9;(2)AD=
【分析】(1)连接BE,证明△ACD≌△BCE,得到AD=BE,在Rt△BAE中,AB=6,AE=3,求出BE,得到答案;
(2)连接BE,证明△ACD∽△BCE,得到 ,求出BE的长,得到AD的长.
【详解】解:(1)如图1,连接BE,
∵∠ACB=∠DCE=90°,
∴∠ACB+∠ACE=∠DCE+∠ACE,即∠BCE=∠ACD,
又∵AC=BC,DC=EC,
在△ACD和△BCE中,
,
∴△ACD≌△BCE,
∴AD=BE,
∵AC=BC=6,
∴AB=6,
∵∠BAC=∠CAE=45°,
∴∠BAE=90°,
在Rt△BAE中,AB=6,AE=3,
∴BE=9,
∴AD=9;
(2)如图2,连接BE,
在Rt△ACB中,∠ABC=∠CED=30°,
tan30°=,
∵∠ACB=∠DCE=90°,
∴∠BCE=∠ACD,
∴△ACD∽△BCE,
∴,
∵∠BAC=60°,∠CAE=30°,
∴∠BAE=90°,又AB=6,AE=8,
∴BE=10,
∴AD=.
考点:相似三角形的判定与性质;全等三角形的判定与性质;勾股定理.
21、(1)12m或16m;(2)195.
【分析】(1)、根据AB=x可得BC=28-x,然后根据面积列出一元二次方程求出x的值;(2)、根据题意列出S和x的函数关系熟,然后根据题意求出x的取值范围,然后根据函数的性质求出最大值.
【详解】(1)、∵AB=xm,则BC=(28﹣x)m, ∴x(28﹣x)=192,
解得:x1=12,x2=16, 答:x的值为12m或16m
(2)、∵AB=xm, ∴BC=28﹣x, ∴S=x(28﹣x)=﹣x2+28x=﹣(x﹣14)2+196,
∵在P处有一棵树与墙CD,AD的距离分别是16m和6m,
∵28-x≥15,x≥6 ∴6≤x≤13,
∴当x=13时,S取到最大值为:S=﹣(13﹣14)2+196=195,
答:花园面积S的最大值为195平方米.
【点睛】
题主要考查了二次函数的应用以及二次函数最值求法,得出S与x的函数关系式是解题关键.
22、见解析.
【分析】根据位似图形的画图要求作出位似图形即可.
【详解】解:如图所示,△A1B1C1即为所求.
【点睛】
本题主要考察位似图形的作图,掌握位似图形的画法是解题的关键.
23、(1)(2) ();(3)或
【分析】(1)过点作,垂足为点.,则.根据构建方程求出即可解决问题.
(2)①证明,可得,由此构建关系式即可解决问题.
②分两种情形:当时,当时,分别求解即可解决问题.
【详解】解:(1)是等边三角形,
,.
,
,
,
,,,
.
过点作,垂足为点.
设,则.
在中,,
,,
,
在中,,
,
解得.
所以线段的长是.
(2)①设,则,.
,,
,
又,
,
,
又,
,
,
由(1)得在中,,,
,
.
②当时,
,则有,
整理得,
解得或(舍弃),
.
当时,同法可得
当时,,
整理得,
解得(舍弃)或1,
.
综上所述:当∠CAD<120°时,; 当120°<∠CAD<180°时,.
【点睛】
本题属于三角形综合题,考查了等边三角形的性质,解直角三角形,相似三角形的判定和性质等知识,解题的关键是学会用分类讨论的思想思考问题,学会利用参数构建方程解决问题,属于中考常考题型.
24、(1);(2)(0,)
【分析】(1)设B(a,b),由反比例函数图象上点的坐标特征用函数a的代数式表示出来b,进而可得ab=6,再根据可得,再设A(m,n),可得,再根据即可求得k的值;
(2)先根据求得点A、B的坐标,再利用轴对称找到符合题意的点P,求出直线的函数关系式,进而可求出点P的坐标.
【详解】解:(1)设B(a,b),
∵B在反比例函数的图象上,
∴b=,
∴ab=6,
即,
∵.
∴,
∴
设A(m,n),
∵A在反比例函数的图象上,
∴,
∴,
∵,
∴,
∴,
∴,
即;
(2)∵,
∴当a=2时,b==3,
∴B(2,3),
当m=2时,
∴A(2,-2),
作点B关于y轴的对称点(-2,3),连接,交y轴于点P,连接PB,
则PB=,
∴,
∵两点之间,线段最短,
∴此时的即可取得最小值,
设为y=k1x+b1,
将(-2,3),A(2,-2)代入得
解得
∴
令x=0,则
∴点P的坐标为(0,).
【点睛】
本题考查了反比例函数图象上点的坐标特征、两点之间线段最短以及用待定系数法求一次函数关系式,熟练掌握反比例函数和一次函数的性质是解决本题的关键.
25、(1)v=,见解析;(2)200≤v≤1
【分析】(1)直接利用反比例函数解析式求法得出答案;
(2)直接利用(1)中所求解析式得出v的取值范围.
【详解】(1)由题意可得:v=,
列表得:
v
…
10
11
625
…
t
…
2
4
6
…
描点、连线,如图所示:
;
(2)当t=20时,v==1,
当t=25时,v==200,
故卸沙的速度范围是:200≤v≤1.
【点睛】
本题主要考查了反比例函数的应用,正确得出函数解析式是解题关键.
26、(1)CE=BF,CE⊥BF,理由见解析;(2)
【分析】(1)由“SAS”可证△AEC≌△AFB,可得CE=BF,∠ABF=∠ACE,进而可得CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,由直角三角形的性质和勾股定理可求E'C的长,由“SAS”可证△F'AB≌△E'AC,可得BF'=CE'=.
【详解】(1)CE=BF,CE⊥BF,理由如下:
∵∠BAC=∠EAF=90°,
∴∠EAC=∠FAB,
又∵AE=AF,AB=AC,
∴△AEC≌△AFB(SAS)
∴CE=BF,∠ABF=∠ACE,
∵∠ADC=∠BDP,
∴∠BPD=∠CAD=90°,
∴CE⊥BF;
(2)过点E'作E'H⊥AC,连接E'C,
∵把△AEF绕点A顺时针旋转至△AE'F′,
∴AF=AE=AE'=AF'=1,∠BAF'=∠E'AC=60°,
∵∠E'AC=60°,∠AHE'=90°,
∴∠AE'H=30°,
∴AH=AE'=,E'H=AH=,
∴HC=AC﹣AH=,
∴E'C==,
∵AF'=AE',∠F'AB=∠E'AC=60°,AB=AC,
∴△F'AB≌△E'AC(SAS)
∴BF'=CE'=.
【点睛】
本题主要考查勾股定理和三角形全等的判定和性质定理,旋转的性质,添加辅助线,构造直角三角形,是解题的关键.
展开阅读全文