资源描述
13.3.1两数和乘以这两数的差(即平方差公式)教学设计
教学目标
1.在已有的整式乘法的知识中摸索、探究,提炼出两数和乘以这两数的差这一乘法公式。
2.使学生会正确运用公式进行整式乘法运算,感受公式的便捷。
3、通过剪纸拼图的活动,体会图形与数学恒等式之间的联系,感受数学的乐趣。
4、注意培养学生分析、综合和抽象、概括以及运算能力。
教学重点和难点
重点:两数和乘以这两数的差的公式的的结构特征及应用。
难点:正确运用两数和乘以这两数的差的公式。
学具准备
剪刀、纸片
教学过程设计
一、情境引入
1.从前有一个狡猾的地主,他将一块长为x米的正方形一边增加2米,另一边减少2米,结果他说这块土地的面积不变,你觉得呢?现在这块土地的面积怎么表示?
我们已经学过了整式的乘法,多项式与多项式相乘的法则是什么?你会计算(x+2)(x-2)的结果吗?
2. 计算:
(1)(x+1)(x-1)
(2)(x+3)(x-3)
(3)(2x+1)(2x-1)
(4)(x+a)(x-a)
计算后大家讨论并交流,所乘的两个式子具有怎样的特点,计算的结果有几项,具有怎样的特征?
让学生动脑、动笔进行探讨,并发表自己的见解.教师根据学生的回答,引导学生进一步思考:
两个二项式相乘,乘式具备什么特征时,积才会是二项式?为什么具备这些特点的两个二项式相乘,积会是两项呢?而它们的积又有什么特征?
从而引出课题——乘法公式:两个数的和乘以这两个数的差(即平方差公式)
(教师板书课题)
二、探究新知
1、教师评价学生的发现,从特殊中总结出一般性,得出两数和乘以它们的差这一乘法公式。
2、合作拼图,用图形的面积再一次说明公式,让学生用语言叙述公式。
二、知识应用
例1 计算(1+2x)(1-2x).
解:(1+2x)(1-2x)
=12-(2x)2
=1- 4x2.
教师引导学生分析题目条件是否符合平方差公式特征,并让学生说出本题中a,b分别表示什么。
例2 计算 (2a+3b)(3b-2a)
解:(2a+3b)(3b-2a)
=(3b)2- (2a)2
=9b2- 4a2
本例题由学生交流完成。教师引导学生发现:只需将(2a+3b)(3b-2a)中的两项交换位置,就可用平方差公式进行计算。
试一试:
运用平方差公式计算:
(l)(x+a)(x-a); (2)(m+n)(m-n);
(3)(a+3b)(a-3b); (4)(1-5y)(l+5y)。
例3 计算(-4a-1)(-4a+1)。
让学生在练习本上计算,教师巡视学生解题情况,让采用不同解法的两个学生进行板演。
解法1:(-4a-1)(-4a+1)
=[-(4a+l)][-(4a-l)]
=(4a+1)(4a-l)
=(4a)2- 12
=16 a2-1。
解法2:(-4a-l)(-4a+l)
= (-4a)2- 12
= 16a2-1。
根据学生板演,教师指出两种解法都很正确,解法1先用了提出负号的办法,使两乘式首项都变成正的,而后看出两数的和与这两数的差相乘的形式,应用平方差公式,写出结果。解法2把-4a看成一个数,把1看成另一个数,直接写出(-4a)2-12后得出结果。采用解法2的同学比较注意平方差公式的特征,能看到问题的本质,运算简捷。因此,我们在计算中,先要分析题目的数字特征,然后正确应用平方差公式,就能比较简捷地得到答案。
三、课堂练习
1.口答下列各题:
(l)(-a+b)(a+b); (2)(a-b)(b+a);
(3)(-a-b)(-a+b); (4)(a-b)(-a-b).
2.计算下列各题:
(1)(4x-5y)(4x+5y); (2)(-2x2+5)(-2x2-5);
教师巡视学生练习情况,请不同解法的学生,或发生错误的学生板演,教师和学生一起分析解决。
四、小结
1.什么是平方差公式?
2.运用公式要注意什么?
(1)要符合公式特征才能运用平方差公式;
(2)有些式子表面不能应用公式,但实质能应用公式,要注意变形。
五、作业
1.运用平方差公式计算:
(l)(x+2y)(x-2y); (2)(2a-3b)(3b+2a);
(3)(-1+3x)(-1-3x); (4)(-2b-5)(2b-5);
(5)(2x3+15)( 2x3-15); (6)(0.3x-0.l)(0.3x+l);
2.计算:
(1)(x+y)(x-y)+(2x+y)(2x+y); (2)(2a-b)(2a+b)-(2b-3a)(3a+2b); (3)x(x-3)-(x+7)(x-7);
展开阅读全文