1、1(8分)阅读材料:用配方法求最值已知x,y为非负实数,x+y20x+y2,当且仅当“x=y”时,等号成立示例:当x0时,求y=x+4的最小值2(10分)如图,已知AB是O的直径,过点A作O的切线MA,P为直线MA上一动点,以点P为圆心,PA为半径作P,交O于点C,连接PC、OP、BC(1)知识探究(如图1):判断直线PC与O的位置关系,请证明你的结论;判断直线OP与BC的位置关系,请证明你的结论(2)知识运用(如图2):当PAOA时,直线PC交AB的延长线于点D,若BD=2AB,求tanABC的值3(10分)如图,二次函数y=x2+bx+c的图象交x轴于A(1,0)、B(3,0)两点,交y轴
2、于点C,连接BC,动点P以每秒1个单位长度的速度从A向B运动,动点Q以每秒个单位长度的速度从B向C运动,P、Q同时出发,连接PQ,当点Q到达C点时,P、Q同时停止运动,设运动时间为t秒(1)求二次函数的解析式;(2)如图1,当BPQ为直角三角形时,求t的值;(3)如图2,当t2时,延长QP交y轴于点M,在抛物线上是否存在一点N,使得PQ的中点恰为MN的中点?若存在,求出点N的坐标与t的值;若不存在,请说明理由4ABC为等边三角形,边长为a,DFAB,EFAC,(1)求证:BDFCEF;(2)若a=4,设BF=m,四边形ADFE面积为S,求出S与m之间的函数关系,并探究当m为何值时S取最大值;(
3、3)已知A、D、F、E四点共圆,已知tanEDF=,求此圆直径5已知二次函数y=x2+bx+c的对称轴为x=2,且经过原点,直线AC解析式为y=kx+4,(1)求二次函数解析式;(2)若=,求k;(3)若以BC为直径的圆经过原点,求k6(8分)在数学活动课中,小辉将边长为和3的两个正方形放置在直线l上,如图1,他连结AD、CF,经测量发现AD=CF(1)他将正方形ODEF绕O点逆时针旋转一定的角度,如图2,试判断AD与CF还相等吗?说明你的理由;(2)他将正方形ODEF绕O点逆时针旋转,使点E旋转至直线l上,如图3,请你求出CF的长7(10分)如图,在坐标系xOy中,已知D(5,4),B(3,
4、0),过D点分别作DA、DC垂直于x轴,y轴,垂足分别为A、C两点,动点P从O点出发,沿x轴以每秒1个单位长度的速度向右运动,运动时间为t秒(1)当t为何值时,PCDB;(2)当t为何值时,PCBC;(3)以点P为圆心,PO的长为半径的P随点P的运动而变化,当P与BCD的边(或边所在的直线)相切时,求t的值8(10分)如图,在坐标系xOy中,ABC是等腰直角三角形,BAC=90,A(1,0),B(0,2),抛物线y=x2+bx2的图象过C点(1)求抛物线的解析式;(2)平移该抛物线的对称轴所在直线l当l移动到何处时,恰好将ABC的面积分为相等的两部分?(3)点P是抛物线上一动点,是否存在点P,使四边形PACB为平行四边形?若存在,求出P点坐标;若不存在,说明理由