资源描述
直角三角形边角关系辅导讲义
年 级: 九年级下 第 课时
学生姓名: 辅导科目: 数学 教师: 莫老师
课 题
第一章:直角三角形边角关系
授课时间:
备课时间:
教学目标
1、 理解锐角三角的概念,熟练掌握直角三角形的边角关系,及会计算特殊角的 三角函数的问题
2、 能运用三角函数解决与直角三角形有关的实际问题
重点、难点
重点:1、会计算含特殊角的三角函数值的问题
2、能运用三角函数解决与直角三角形有关的实际问题
难点:能运用三角函数解决与直角三角形有关的实际问题
考点及考试要求
1、会计算含特殊角的三角函数值的问题
2、灵活运用三角函数解决与直角三角形有关的实际问题
辅助资料
中考数学资料
教学内容
※一. 正切:
定义:在Rt△ABC中,锐角∠A的对边与邻边的比叫做∠A的正切,记作tanA,
即;
①tanA是一个完整的符号,它表示∠A的正切,记号里习惯省去角的符号“∠”;
②tanA没有单位,它表示一个比值,即直角三角形中∠A的对边与邻边的比;
③tanA不表示“tan”乘以“A”;
④初中阶段,我们只学习直角三角形中,∠A是锐角的正切;
⑤tanA的值越大,梯子越陡,∠A越大;∠A越大,梯子越陡,tanA的值越大。
※二. 正弦:
定义:在Rt△ABC中,锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA,即;
※三. 余弦:
定义:在Rt△ABC中,锐角∠A的邻边与斜边的比叫做∠A的余弦,记作cosA,即;
※余切:
定义:在Rt△ABC中,锐角∠A的邻边与对边的比叫做∠A的余切,记作cotA,即;
※一个锐角的正弦、余弦、正切、余切分别等于它的余角的余弦、正弦、余切、正切。
0º
30 º
45 º
60 º
90 º
sinα
0
1
cosα
1
0
tanα
0
1
—
cotα
—
1
0
(通常我们称正弦、余弦互为余函数。同样,也称正切、余切互为余函数,可以概括为:一个锐角的三角函数等于它的余角的余函数)用等式表达:若∠A为锐角,则
①;
②;
※当从低处观测高处的目标时,视线与水平线所成的锐角称为仰角
※当从高处观测低处的目标时,视线与水平线所成的锐角称为俯角
※利用特殊角的三角函数值表,可以看出,(1)当角度在0°~90°间变化时,正弦值、正切值随着角度的增大(或减小)而增大(或减小);余弦值、余切值随着角度的增大(或减小)而减小(或增大)。(2)0≤sinα≤1,0≤cosα≤1。
图1
※同角的三角函数间的关系:
倒数关系:tgα·ctgα=1。
※在直角三角形中,除直角外,一共有五个元素,即三条边和二个锐角。由直角三角形中除直角外的已知元素,求出所有未知元素的过程,叫做解直角三角形。
◎在△ABC中,∠C为直角,∠A、∠B、∠C所对的边分别为a、b、c,则有
(1)三边之间的关系:a2+b2=c2;
(2)两锐角的关系:∠A+∠B=90°;
(3)边与角之间的关系:
图2
a
c
b
A
B
C
(4)面积公式:(hc为C边上的高);
(5)直角三角形的内切圆半径
(6)直角三角形的外接圆半径
◎解直角三角形的几种基本类型列表如下:
图2
h
i=h:l
l
A
B
C
◎解直角三角形的几种基本类型列表如下:
图3
图4
※ 如图2,坡面与水平面的夹角叫做坡角 (或叫做坡比)。用字母i表示,即
◎从某点的指北方向按顺时针转到目标方向的水平角,叫做方位角。如图3,OA、OB、OC的方位角分别为45°、135°、225°。
◎指北或指南方向线与目标方向线所成的小于90°的水平角,叫做方向角。如图4,OA、OB、OC、OD的方向角分别是;北偏东30°,南偏东45°(东南方向)、南偏西为60°,北偏西60
课后作业:
学生对于本次课的评价:
○ 特别满意 ○ 满意 ○ 一般 ○ 差
学生签字:
教师评定:
1、 学生上次作业评价: ○ 好 ○ 较好 ○ 一般 ○ 差
2、 学生本次上课情况评价: ○ 好 ○ 较好 ○ 一般 ○ 差
教师签字:
家长签字:___________
4
展开阅读全文