收藏 分销(赏)

带有外部治疗的癌症模型的动力学分析.pdf

上传人:自信****多点 文档编号:614752 上传时间:2024-01-16 格式:PDF 页数:25 大小:6.51MB
下载 相关 举报
带有外部治疗的癌症模型的动力学分析.pdf_第1页
第1页 / 共25页
带有外部治疗的癌症模型的动力学分析.pdf_第2页
第2页 / 共25页
带有外部治疗的癌症模型的动力学分析.pdf_第3页
第3页 / 共25页
亲,该文档总共25页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、Advances in Applied Mathematics A?,2023,12(8),3684-3708Published Online August 2023 in Hans.https:/www.hanspub.org/journal/aamhttps:/doi.org/10.12677/aam.2023.128365k?Jw?.?CCCCCC“?vF2023c7?21FF2023c8?13FuF2023c8?24F,Jw%?a)x?-;,u?S3un-:5?K.?|X|n?5Jw?a1,?/?Jw?|y?,5u?J4?.3?x5?A?Jw?.?1,?:?a.,y?2?Hopf|2?

2、Bogdanov-Takens|?35.?L?y?(.cJwO?.-5Allee?AHopf|Bogdanov-Takens|Dynamic Analysis of Cancer Model withExternal TherapyYingying SunSchool of Mathematics,Hangzhou Normal University,Hangzhou ZhejiangReceived:Jul.21st,2023;accepted:Aug.13th,2023;published:Aug.24th,2023:CC.k?Jw?.?J.A?,2023,12(8):3684-3708.

3、DOI:10.12677/aam.2023.128365CCAbstractAs we all know,cancer has always been one of the major diseases threatening lifeand health,and its intrinsic pathogenesis is an important research topic that manyscientists focus on.In this paper,we will make full use of bifurcation theory ofdynamical systems an

4、d numerical simulations to study various dynamics related tocancer,striving to fully reveal the medical significance of bifurcation related to cancer,and provide positive help for predicting the future development trend of the disease.We mainly study the dynamics of a two-dimensional cancer model in

5、volving tumorcells and immune effector cells.We obtain the number and type of equilibrium points,verify the Hopf bifurcation of codimension 2 and the Bogdanov-Takens bifurcation ofcodimension 2.Finally,the conclusions obtained are verified by numerical simulations.KeywordsCancer Growth Model,Stabili

6、ty,Allee Effect,Hopf Bifurcation,Bogdanov-TakensBifurcationCopyright c?2023 by author(s)and Hans Publishers Inc.This work is licensed under the Creative Commons Attribution International License(CC BY 4.0).http:/creativecommons.org/licenses/by/4.0/1.0?Jw-.5?K,5?O?N?|.?,?*!E,.,!z?!-?U?J.+?K)?,?Jw?E3X

7、.3L?Acp,u?)!u?1?,?E,XdEu).5Xm?pE,?y,?N?5.?Khajanchi?.:E0?,0?,k:E(x,y)kXe/?:J(E)=+y+y y(x)+x+yxy(+y)2yx y+(1 y)!,Kdet(J(E)=xy2+x(+y)2+(+y)(2y 1)+)(+y)(+y)y)(+y)2,tr(J(E)=x 2y+y+y y .DOI:10.12677/aam.2023.1283653686A?CCXJdet(J(E)6=0,oE(x,y)z:;XJdet(J(E).:E0?,0?,N/?en.n1 X(2)k.:E0?,0?.XJ+,oE0V-(:;XJ+=,

8、oE0z:.n2 e+=,KE0?,0?z:,d?,(1)XJ 6=2,oE0?,0?Q(:,)-?/;(2)XJ=2,(a)XJ=()2,oE0?,0?Q(:,)-?/;(b)XJ()2 0,oE0?,0?zQ:;(c)XJ0 ()2,oE0?,0?-?z(:.y?+=,kdet(J(E0)=0 tr(J(E0)=(+)+.k,-(u,v)=?x,y?E0?,0?:,X(2)C?dudt=?+u?v+v+v?,dvdt=v?+u?+v(1 v)v.(4)?XXeC:u=?X+Y,v=X,t=1,E,t 5L,X(4)3?:NC?1?Vm,kdXdt=a20X2+a11XY+f(X,Y),dY

9、dt=Y+b20X2+b11XY+b30X3+b21X2Y+b40X4+b31X3Y+g(X,Y),(5)f,g u(X,Y)?1w,a20=+()2,a11=1,b20=(2()(+)+)()2)32,b11=(2+)()2,b30=(+)3,b21=2,b40=(+)+2Y)4,b31=23.n5 2,?6=2,E0?,0?Q(:,?-?/.XJ=2,ka20=0.%6/n,b?Y=m1X2+m2X3+o(|X|3),ODOI:10.12677/aam.2023.1283653687A?CCX(5)?1?.LX(5)?1,?m1=()2)(),m2=()2)+2 ()()2 2)2().Y

10、=m1X2+m2X3+o(|X|3)X(5)?1,?dXdt=()2)()X3+O?X3?.?=()2,=()2“X(5)?1,?dXdt=()2X4+O(X)4.n5 2?1,kmC=t,uy?0 ()2 0 ,oE0?,0?(:;?0 ()2()2 0 ,E0?,0?Q:;?=()2,E0?,0?Q(:.R2+=(x,y)|x 0,y 0?X?Ky:E0?,0?.?/,dV-/|.d?,du()2 0,o?/3m.?e5X(2)?:?a.XJE(x,y)X(2)?:,Kx x3+bx2+cx+d=0(6)?.pb=(+)2+2,c=(+1)(+)+)(+)+2)+2,d=(+).?:?a.

11、,-f(x)=x3+bx2+cx+d,f0(x)=3x2+2bx+c.df(x)=0,?=?x x(+x+)(+1)+x+?.(7)DOI:10.12677/aam.2023.1283653688A?CCX(2)3:E(x,y)?zJ(E)=+(+1)+x+(+x+)x?22(+1)+x+)2?+x+x+,KJ(E)?1?,O:det(J(E)=A(+x+)(+1)+x+)2,tr(J(E)=x+(+1)+x+(+x+),A=2x3(+)?2(+1)(+)(+)+2)+2?+2x(+)(+)+2)2)+x2(5 (+4 )+5).(7)“det(J(E),Kdet(J(E)-#Ldet(J(E

12、)=Bf0(x)+f(x)(x )(+1)+x+)2=B(+1)+x+)2f0(x),(8)B=x2+(2 (+2)x+()(+).n?“?,42=22,3=422?k23 3k1k2?+14(k2k3 9k1)2.(9)p2=2?2?2(+2)+()2?+(+)+2?(+)+3+2)+22,k1=(+),k2=(+)+2)2,k3=2(+1)(+)(+)+2)+2.(10)du(6)?dT?,d3?X(2)?:?a.,e:(+1)(+1).DOI:10.12677/aam.2023.1283653689A?CC(I).:E0?,0?,kn?:.1?f(x)?”,ke?n:n3?(+1)x +

13、,X(2)?k?:,kn?:.d?,77n:(1)?3 0 7?IV,X(2)kn?:(a)?ng?n,?b 0,X(2)kn?:E2V-Q:,XJtr(J(Ei)0,oEi(xi,yi)(i=1,3)V-?(:?:;XJtr(J(Ei)=0,oEi(xi,yi)(i=1,3)f?:%,0 x1 x2 x3 +x1 x2 x3.(1(a).(b)3e,X(2)k?:?K:.XJtr(J(E3)0,KE3V-(:?:;XJtr(J(E3)=0,KE3f?:%.duEi(xi,yi)(i=1,2)K:,?.(1(f).(2)?3=0,(a)e2 0,of(x)kn,x?-.i.?b 0,X(2)k

14、?:z:E(x,y)?:E1(x1,y1)(E3(x3,y3).XJtr(J(Ei)0,KE1(x1,y1)(E3(x3,y3)V-(:?:;XJtr(J(Ei)=0,KE1(x1,y1)(E3(x3,y3)f?:%,x1 x(1(b)x1 x3(1(c).ii.XJc 0,X(2)k?:E3(x3,y3).XJtr(J(E3)0,KE3(x3,y3)V-(:?:;XJtr(J(E3)=0,oE3(x3,y3)f?:%.duE(x,y)K:,?.,x 0,f(x)k?E.,Xk?:E3(x3,y3).XJtr(J(E3)0,KE3(x3,y3)V-(:?:;XJtr(J(E3)=0,oE3(x

15、3,y3)f?:%.Ei(xi,yi)(i=1,2)3E,?.(1(e).y d(8),?x +(x2+(2(+2)x+()(+)(+1)+x+)2 0,kf0(x)0,f0(x)0=det(J(E)0 f0(x)=0=det(J(E)=0.DOI:10.12677/aam.2023.1283653690A?CCNwdet(J(Ei)0,det(J(E)=0,det(J(E)=0,dE1,E2E3?:(Ei),(i=1,3)V-Q:,?EEz:.Figure 1.Roots of f(x)=0 when (+1).(a)Three single positive roots x1,x2,x3.

16、(b)(c)Twopositive roots:a double root xand a single rootx1(or x3).(d)A unique triple positive root x.(e)A realroot and a pair of conjugate complex roots.(f)Two negative roots x1,x2and a positive root x3.(g)A doublenegtive rootxand a positive root x3 1.?(+1),f(x)=0?.(a)n?x1,x2,x3.(b)(c)?:?-x?x1(x3).(

17、d)?n-x.(e)?E.(f)Kx1,x2?x3.(g)K?-x?x3n4?(+1)x +,X(2)?k?:,kn?:.d?,77n(1)?3 0,KX(2)kn?:(a)?ng?n,?b 0,X(2)kn?:Ei(xi,yi)(i=1,3)-?V-Q:.XJtr(J(Ei)0,oE2V-?(:?:;XJtr(J(Ei)=0,oE2f?:%,x1 x2 x3 0,of(x)kn,x?-.i.?b 0,X(2)k?:z:E(x,y)V-Q:E1(x1,y1)(E3(x3,y3);XJtr(J(Ei)0 KE1(x1,y1)(E3(x3,y3)V-(:?:;XJtr(J(Ei)=0,KE1(x1

18、,y1)(E3(x3,y3)f?:%:,x1 x(1(b)x1 x3(1(c).ii.XJc 0,X(2)k?:E3(x3,y3),E3V-Q:.duE(x,y)K:,vk?,x 0,X(2)k?E.,Xk?:E3(x3,y3),V-Q:.Ei(xi,yi)(i=1,2)3E,?.(1(e).y d(8),?x +,(x2+(2(+2)x+()(+)(+1)+x+)2 0,kf0(x)0=det(J(E)0=det(J(E)0;f0(x)=0=det(J(E)=0.Nwdet(J(Ei)0,(i=1,3),det(J(E2)0,det(J(E)=0,det(J(E)=0 E1,E2E3?:kE

19、2V-Q:,?EEz:.(II)(+1)n5?(+1),X(2)k?:.d?,77n:(1)?3 0,X(2)kn?:(a)?b 0 c 0,f(x)kn?K,X(2)vk?:(2(a).(b)?b 0 c 0,X(2)k?:Ei(xi,yi)(i=2,3).(2(b).i.?x +,E2(x2,y2)V-Q:,XJtr(J(E3)0,oE3(x3,y3)V-(:?:;XJtr(J(E3)=0,oE3(x3,y3)f?:%,x1 0 x2 x3 x1 0 +x2 x3.ii.?x +,E3(x3,y3)V-Q:,XJtr(J(E2)0,oE2(x2,y2)V-(:?:;XJtr(J(E2)=0

20、,oE2(x2,y2)f?:%,x1 0 x2 x3 0,of(x)kn,x?-.i.?c 0 b 0,X(2)vk?:.(2(c)2(d).ii.?b 0 c 0,Kf(x)kK?E.,X(2)vk?:.(2(g).y d(8),?x +(x2+(2(+2)x+()(+)(+1)+x+)2 0,kf0(x)0,f0(x)0=det(J(E)0 f0(x)=0=det(J(E)=0.NDOI:10.12677/aam.2023.1283653692A?CCwdet(J(E2)0,det(J(E)=0,dE2E3?:k(E2)V-Q:,Ez:.?x +,(x2+(2(+2)x+()(+)(+1)

21、+x+)2 0,kf0(x)0=det(J(E)0=det(J(E)0;f0(x)=0=det(J(E)=0.Nwdet(J(E2)0,det(J(E3)0,?A?1,2 uJ.d?,XJA?1,2=i,=h1p2 h2p1.e?n?)Hopf|?.n3 b?F(x)=0,tr(J(E)=0,XJ1oX1 0(1.:-(:(1.603,0).dX(2)?|,X?A?O,?:?dnC(Hopf|:),L5?Ay?5?.5.o(3?,?x5?A?Jw?.?1,?DOI:10.12677/aam.2023.1283653703A?CCFigure 4.The phase portraits of I

22、 IV in Figure 3 4.3I IV?:?a.,2?Hopf|,2?Q(|BT|.?L?y?(.?J?,duJw?.?14E,?n?(J?-0,K7II:x1=b?3Y1+3Y2?3a,x2,3=b+?12?3Y1+3Y2?123i?3Y13Y2?3a,(33)Y1,2=Ab+3a2?B B2 4AC?,i2=1.?=B2 4AC=0,7III:x1=ba+K,x2=x3=K2,(34)K=BA,(A 6=0).DOI:10.12677/aam.2023.1283653706A?CC?=B2 4AC 0,1 T 0(d,7II)K).7n5:?A 0(d,7II)K).7n6:?=0

23、,eA=0,K7kB=0(d,7I)K).7n7:?=0,eB 6=0,7III3A 0?(d,7III)K).7n8:?0,7IV 3A 0?(d,7IV)K).7n9:?0,7IV 3T 1T 1?,=T7v1 T 1.n6Zhang et al.2uXdxdt=P2(x,y)dydt=y+Q2(x,y),(39)DOI:10.12677/aam.2023.1283653707A?CCb?O(0,0)X(39)?.:,S(O)O(0,0)NC?,?P2,Q2?u2?S(O)?).d,uv?,3)(x)v(x)+Q2(x,(x)0,|x|0,KO(0,0)-?(:.2.XJm,am 0(0),K?3m().DOI:10.12677/aam.2023.1283653708A?

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 学术论文 > 论文指导/设计

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服