资源描述
第一章思考题1.1 平均速度与瞬时速度有何不同?在上面情况下,它们一致?1.2 在极坐标系中,.为什么而非?为什么rvr=rv=2 rrar=r rra20+=而非?你能说出中的和中另一个出现的原因和它们的物理意义 rr+ra2rar吗?1.3 在内禀方程中,是怎样产生的?为什么在空间曲线中它总沿着主法线方向?当质点na沿空间运动时,副法线方向的加速度等于零,而作用力在副法线方向的分量一般不等babF于零,这是不是违背了牛顿运动定律呢?1.4 在怎样的运动中只有而无?在怎样的运动中又只有而无?在怎样的运动中ananaa既有而无?naa1.5与有无不同?与有无不同?试就直线运动与曲线运动分别加以讨论.dtrddtdrdtvddtdv1.6 人以速度向篮球网前进,则当其投篮时应用什么角度投出?跟静止时投篮有何不同?v1.7 雨点以匀速度落下,在一有加速度的火车中看,它走什么路经?va1.8 某人以一定的功率划船,逆流而上.当船经过一桥时,船上的渔竿不慎落入河中.两分钟后,此人才发现,立即返棹追赶.追到渔竿之处是在桥的下游 600 米的地方,问河水的流速是多大?1.9 物体运动的速度是否总是和所受的外力的方向一致?为什么?1.10 在那些条件下,物体可以作直线运动?如果初速度的方向和力的方向一致,则物体是沿力的方向还是沿初速度的方向运动?试用一具体实例加以说明.1.11 质点仅因重力作用而沿光滑静止曲线下滑,达到任一点时的速度只和什么有关?为什么是这样?假如不是光滑的将如何?1.12 为什么被约束在一光滑静止的曲线上运动时,约束力不作功?我们利用动能定理或能量积分,能否求出约束力?如不能,应当怎样去求?1.13 质点的质量是 1 千克,它运动时的速度是,式中、是沿、k k k kj j j ji i i iv v v v323+=i i i ij j j jk k k kx、轴上的单位矢量。求此质点的动量和动能的量值。yz1.14 在上题中,当质点以上述速度运动到(1,2,3)点时,它对原点及轴的动量矩各Oz是多少?1.15 动量矩守恒是否就意味着动量也守恒?已知质点受有心力作用而运动时,动量矩是守恒的,问它的动量是否也守恒?1.16 如,则在三维直角坐标系中,仍有的关系存在吗?试验之。()rFF=0=F1.17 在平方反比引力问题中,势能曲线应具有什么样的形状?1.18 我国发射的第一颗人造地球卫星的轨道平面和地球赤道平面的交角为 685,比苏课后答案网联及美国第一次发射的都要大。我们说,交角越大,技术要求越高,这是为什么?又交角大的优点是什么?1.19 卢瑟福公式对引力库仑场来讲也能适用吗?为什么?第一章思考题解答1.1 答:平均速度是运动质点在某一时间间隔内位矢大小和方向改变的平均快慢ttt+速度,其方向沿位移的方向即沿对应的轨迹割线方向;瞬时速度是运动质点在某时刻或t某未知位矢和方向变化的快慢程度其方向沿该时刻质点所在点轨迹的切线方向。在0t的极限情况,二者一致,在匀速直线运动中二者也一致的。1.2 答:质点运动时,径向速度和横向速度的大小、方向都改变,而中的只反映rV VV Vrar 了本身大小的改变,中的只是本身大小的改变。事实上,横向速度rV Va rr+V VV V方向的改变会引起径向速度大小大改变,就是反映这种改变的加速度分量;经向rV V2r速度的方向改变也引起的大小改变,另一个即为反映这种改变的加速度分量,故rV VV Vr,。这表示质点的径向与横向运动在相互影响,它们一起才能2 rrar=.2 rra+=完整地描述质点的运动变化情况1.3 答:内禀方程中,是由于速度方向的改变产生的,在空间曲线中,由于恒位于密切naa a面内,速度总是沿轨迹的切线方向,而垂直于指向曲线凹陷一方,故总是沿助法v vnav vna线方向。质点沿空间曲线运动时,z 何与牛顿运动定律不矛盾。因质点除受0,0=bbFa作用力,还受到被动的约反作用力,二者在副法线方向的分量成平衡力,F FR R0=+bbRF故符合牛顿运动率。有人会问:约束反作用力靠谁施加,当然是与质点接触的周围0=ba其他物体由于受到质点的作用而对质点产生的反作用力。有人也许还会问:某时刻若大小不等,就不为零了?当然是这样,但此时刻质点受合力的方向与原来不同,bbRF与ba质点的位置也在改变,副法线在空间中方位也不再是原来所在的方位,又有了新的副法ba线,在新的副法线上仍满足。这反映了牛顿定律得瞬时性和矢量性,00=+bbbaRF即也反映了自然坐标系的方向虽质点的运动而变。1.4 答:质点在直线运动中只有,质点的匀速曲线运动中只有;质点作naa而无aan而无变速运动时即有。ntaa又有1.5 答:即反应位矢 大小的改变又反映其方向的改变,是质点运动某时刻的速度矢量,dtdr rr r而只表示 大小的改变。如在极坐标系中,而。在直线运动中,规dtdrr rj ji ir rrrdtd+=rdtdr=定了直线的正方向后,。且的正负可表示的指向,二者都可表示质点的运dtddtdrr r=dtdrdtdr 课后答案网动速度;在曲线运动中,且也表示不了的指向,二者完全不同。dtddtdrr rdtdrdtdr r表示质点运动速度的大小,方向的改变是加速度矢量,而只是质点运动速度大小dtdv vdtdv的改变。在直线运动中规定了直线的正方向后,二者都可表示质点运动的加速度;在曲线运动中,二者不同,。adtdvaadtdn=+=而,v v1.6 答:不论人是静止投篮还是运动投篮,球对地的方向总应指向篮筐,其速度合成如题 1.6图所示,故人以速度向球网前进时应向高于篮筐的方向投出。静止投篮是直接向篮筐投V V出,(事实上要稍高一点,使球的运动有一定弧度,便于投篮)。1.7 答:火车中的人看雨点的运动,是雨点的匀速下落运动及向右以加速度的匀速水平直a线运动的合成运动如题 1.7 图所示,是固定于车的坐标系,雨点相对车的加速度,其相对运动方程yxoa aa a=vtyatx221消去 的轨迹txavy=222如题图,有人会问:车上的人看雨点的轨迹是向上凹而不是向下凹呢?因加速度总是在曲线凹向的内侧,垂直于方向的分量在改变着的方向,该轨迹上凹。a aV V n na aV V 课后答案网1.8 答:设人发觉干落水时,船已上行,上行时船的绝对速度,则s水船VV()2VV=水船s船反向追赶竿的速度,设从反船到追上竿共用时间,则水船VV+tst+=+600)VV(水船又竿与水同速,则600)2=+tV(水+=得min150mV=水1.9 答:不一定一致,因为是改变物体运动速度的外因,而不是产生速度的原因,加速度的方向与合外力的方向一致。外力不但改变速度的大小还改变速度的方向,在曲线运动中外力与速度的方向肯定不一致,只是在加速度直线运动二者的方向一致。1.10 答:当速度与物体受的合外力同一方位线且力矢的方位线不变时,物体作直线运动。在曲线运动中若初速度方向与力的方向不一致,物体沿出速度的方向减速运动,以后各时刻既可沿初速度方向运动,也可沿力的方向运动,如以一定初速度上抛的物体,开始时及上升过程中初速度的方向运动,到达最高点下落过程中沿力的方向运动。在曲线运动中初速度的方向与外力的方向不一致,物体初时刻速度沿初速度的反方向,但以后既不会沿初速度的方向也不会沿外力的方向运动,外力不断改变物体的运动方向,各时刻的运动方向与外力的方向及初速度的方向都有关。如斜抛物体初速度的方向与重力的方向不一致,重力的方向决定了轨道的形状开口下凹,初速度的方向决定了射高和射程。1.11 答:质点仅因重力作用沿光滑静止曲线下滑,达到任意点的速度只和初末时刻的高度差有关,因重力是保守力,而光滑静止曲线给予质点的发向约束力不做功,因此有此结论假如曲线不是光滑的,质点还受到摩擦力的作用,摩擦力是非保守力,摩擦力的功不仅与初末位置有关,还与路径有关,故质点到达任一点的速度不仅与初末高度差有关,还与曲线形状有关。1.12 答:质点被约束在一光滑静止的曲线上运动时,约束力的方向总是垂直于质点的运动方向,故约束力不做功,动能定理或能量积分中不含约束力,故不能求出约束力。但用动能定理或能 量积分可求 出质点在某 位置的速度,从而得出,有牛顿 运动方程na便可求出,即为约束力nnnmaRF=+nR1.13 答:动量()smkgmvp.22243231=+=动能课后答案网()mNmvT=+=83231212122221.14 答:()()()k kj ji ik kj ji iv vr rJ J6239632323321+=m故()()()=+=smkgJsmkgJZ222220467.84396321.15 答:动量矩守恒意味着外力矩为零,但并不意味着外力也为零,故动量矩守恒并不意味着动量也守恒。如质点受有心力作用而运动动量矩守恒是由于力过力心,力对力心的矩为零,但这质点受的力并不为零,故动量不守恒,速度的大小和方向每时每刻都在改变。1.16 答:若,在球坐标系中有()rFF=()()()000=e ee ee ee ee eF Fr rrFrFrFr由于坐标系的选取只是数学手段的不同,它不影响力场的物理性质,故在三维直角坐标系中仍有的关系。在直角坐标系中0 0F F=()()()()k kj ji ir rF Fzk,zk,j ji ir rrFiFrFyxzyx+=+=故()()()()()()()()()()00=+=+=0 00 0r rr rr rr rk kj ji ik kj ji ik kj ji iF FrrFrFrrFrzyxrFrzrFryrFrxrFzyxrFrFrFzyxzyx事实上据“”算符的性质,上述证明完全可以简写为()0=r rF FrF这表明有心力场是无旋场记保守立场1.17 答平方反比力场中系统的势能,其势能曲线如题图 1.17 图所示,()rmkrV2=课后答案网由。()()()rVETrVETErVT=+故有因知,0,若,其势能曲线对应于近日点和远日点之间的一段。近日点处0E运动;若位于有界和无界之间,对应于抛物线轨道的运动;这两种轨道的运动都没有0=E近日点,即对大的质点的运动是无界的,当很大时,还是选无限远为零势点rr()0rV的缘故,从图中可知,做双曲轨道运动比抛物轨道和椭圆轨道需要的进入轨道需要的动能要大。事实及理论都证明,平方反比引力场中质点的轨道正是取决于进入轨道时初动能的大小由=0002122Ermkmv得rkrkrkV2222即速度的大小就决定了轨道的形状,图中对应于进入轨道时的达到第一二三宇V321,TTT宙速度所需的能量由于物体总是有限度的,故有一极小值,既相互作用的二质点不可reR能无限接近,对于人造卫星的发射其为地球半径。为地面上发射时所需的eR()rVET=0初动能,图示分别为使卫星进入轨道时达到一二三宇宙速度在地面上的发射动030201,TTT能。.为进入轨道前克服里及空气阻力做功所需的能量。()iiTT03,2,1=i1.18 答:地球附近的物体都受到随地球自转引起的惯性离心力的作用,此力的方位线平行于赤道平面,指向背离地轴。人造地球卫星的轨道平面和地球赤道平面的夹角越大,则卫星的课后答案网惯性离心力与轨道平面的家教越大,运动中受的影响也越大,对卫星导向控制系统的要求越高。交角越大,对地球的直接探测面积越大,其科学使用价值越高。1.19 答:对库仑引力场有,轨道是双0E,r 2V4,212022则,若其中kzekErkmv=曲线的一点,与斥力情况相同,卢瑟福公式也适用,不同的是引力情况下力心在双曲线凹陷方位内侧;若,轨道椭圆或抛物线,卢瑟福公式不适用,0,22ErkV则()0E()0=E仿照课本上的推证方法,在入射速度的情况下即可得卢瑟福公式。近代物理学的正,rkV20负粒子的对撞试验可验证这一结论的近似正确性。第一章习题1.1 沿水平方向前进的枪弹,通过某一距离 s 的时间为 t,而通过下一等距离 s 的时间为.12t试证明枪弹的减速度(假定是常数)为()()2121122ttt ttts+1.2 某船向东航行,速率为每小时 15km,在正午某一灯塔。另一船以同样速度向北航行,在下午 1 时 30 分经过此灯塔。问在什么时候,两船的距离最近?最近的距离是多少?1.3 曲柄以匀角速绕定点 O 转动。此曲柄借连杆 AB 使滑块 B 沿直线运动。,rAO=Ox求连杆上点的轨道方程及速度。设,。CaCBAC=ABOAOB,第 1.3 题图1.4 细杆绕点以角速转动,并推动小环 C 在固定的钢丝上滑动。图中的为已OLOABd知常数,试求小球的速度及加速度的量值。课后答案网1.5 矿山升降机作加速度运动时,其变加速度可用下式表示:=Ttca2sin1式中及为常数,试求运动开始 秒后升降机的速度及其所走过的路程。已知升降机的初cTt速度为零。1.6 一质点沿位失及垂直于位失的速度分别为及,式中及是常数。试证其沿位r矢及垂直于位失的加速度为+rrr,2221.7 试自sin,cosryrx=出发,计算及。并由此推出径向加速度及横向加速度。x y raa1.8 直线在一给定的椭圆平面内以匀角速绕其焦点转动。求此直线与椭圆的焦点FMF的速度。已知以焦点为坐标原点的椭圆的极坐标方程为M()cos112eear+=式中为椭圆的半长轴,为偏心率,都是常数。ae1.9 质点作平面运动,其速率保持为常数。试证其速度矢量v v v v与加速度矢量a a a a正交。1.10 一质点沿着抛物线运动其切向加速度的量值为法向加速度量值的倍。pxy22=k2如此质点从正焦弦的一端以速度出发,试求其达到正焦弦另一端时的速率。pp,2u1.11 质点沿着半径为的圆周运动,其加速度矢量与速度矢量间的夹角保持不变。求质r点的速度随时间而变化的规律。已知出速度为。0v1.12 在上题中,试证其速度可表为()00=evvctg式中为速度矢量与轴间的夹角,且当时,。x0=t0=1.13 假定一飞机从处向东飞到处,而后又向西飞回原处。飞机相对于空气的速度为,ABv而空气相对于地面的速度为。与之间的距离为。飞机相对于空气的速度保持不0vAB课后答案网变。假定,即空气相对于地面是静止的,试证来回飞行的总时间为()aovo=vlt=20假定空气速度为向东(或向西),试证来回飞行的总时间为()b20021vvttB=假定空气的速度为向北(或向南),试证来回飞行的总时间为()c20021vvttN=1.14 一飞机在静止空气中每小时的速率为 100 千米。如果飞机沿每边为 6 千米的正方形飞行,且风速为每小时 28 千米,方向与正方形的某两边平行,则飞机绕此正方形飞行一周,需时多少?1.15 当一轮船在雨中航行时,它的雨篷遮着篷的垂直投影后 2 米的甲板,篷高 4 米。但当轮船停航时,甲板上干湿两部分的分界线却在篷前 3 米。如果雨点的速度为 8 米/秒,求轮船的速率。1.16 宽度为的河流,其流速与到河岸的距离成正比。在河岸处,水流速度为零,在河流d中心处,其值为。一小船以相对速度沿垂直于水流的方向行驶,求船的轨迹以及船在对cu岸靠拢的地点。1.17 小船被水冲走后,由一荡桨人以不变的相对速度朝岸上点划回。假定河流速M2CA度沿河宽不变,且小船可以看成一个质点,求船的轨迹。1C1.18 一质点自倾角为的斜面上方点,沿一光滑斜槽下降。如欲使此质点到达斜面OOA上所需的时间为最短,问斜槽与竖直线所成之角应为何值?OA1.19 将质量为的质点竖直抛上于有阻力的媒质中。设阻力与速度平方成正比,即m。如上抛时的速度为,试证此质点又落至投掷点时的速度为22gvmkR=0v022011vkvv+=课后答案网1.20 一枪弹以仰角、初速度自倾角为的斜面的下端发射。试证子弹击中斜面的地方0v和发射点的距离(沿斜面量取)及此距离的最大值分别为d()202cossincos2=gvd。=24sec2202maxgvd1.21 将一质点以初速抛出,与水平线所成之角为。此质点所受到的空气阻力为其速0v0v度的倍,为质点的质量,为比例系数。试求当此质点的速度与水平线所成之角又为mkmk时所需的时间。1.22 如向互相垂直的匀强电磁场、中发射一电子,并设电子的初速度与及垂E E E EB B B BV V V VE E E EB B B B直。试求电子的运动规律。已知此电子所受的力为,式中为电场强度,e()B B B Bv v v vE E E E+E E E Ee为电子所带的电荷,为任一瞬时电子运动的速度。v v v v1.23 在上题中,如,则电子的轨道为在竖直平面的抛物线;()a0=B B B B()平面xy如,则电子的轨道为半径等于的圆。试证明之。()b0=E E E EeBmV1.24 质量为与的两质点,为一不可伸长的轻绳所联结,绳挂在一光滑的滑轮上。在mm2的下端又用固有长度为、倔强系数为的弹性绳挂上另外一个质量为的质点。makamgm在开始时,全体保持竖直,原来的非弹性绳拉紧,而有弹性的绳则处在固有的长度上。由此静止状态释放后,求证这运动是简谐的,并求出其振动周期及任何时刻两段绳中的张力T及。T1.25 滑轮上系一不可伸长的绳,绳上悬一弹簧,弹簧另一端挂一重为的物体。当滑轮以W匀速转动时,物体以匀速下降。如将滑轮突然停住,试求弹簧的最大伸长及最大张力。0v假定弹簧受的作用时的静伸长为。W01.26 一弹性绳上端固定,下端悬有及两质点。设为绳的固有长度,为加后的伸mmabm长,为加后的伸长。今将任其脱离而下坠,试证质点在任一瞬时离上端的距cmmmO课后答案网离为tbgcbacos+1.27 一质点自一水平放置的光滑固定圆柱面凸面的最高点自由滑下。问滑至何处,此质点将离开圆柱面?假定圆柱体的半径为。r1.28 重为的不受摩擦而沿半长轴为、半短轴为的椭圆弧滑下,此椭圆的短轴是竖直Wab的。如小球自长 2 轴的端点开始运动时,其初速度为零,试求小球在到达椭圆的最低点时它对椭圆的压力。1.29 一质量为的质点自光滑圆滚线的尖端无初速地下滑。试证在任何一点的压力为m,式中为水平线和质点运动方向间的夹角。已知圆滚线方程为cos2mg()()2cos1,2sin2cayax=+=1.30 在上题中,如圆滚线不是光滑的,且质点自圆滚线的尖端自由下滑,达到圆滚线的最低点时停止运动,则摩擦系数应满足下式12=e试证明之。1.31 假定单摆在有阻力的媒质中振动,并假定振幅很小,故阻力与成正比,且可写为,式中是摆锤的质量,为摆长,为比例系数。试证当时,单摆mklR2=mlk2klg的振动周期为lkgl22=1.32 光滑楔子以匀加速度沿水平面运动。质量为的质点沿楔子的光滑斜面滑下。求质0am点的相对加速度和质点对楔子的压力。aP1.33 光滑钢丝圆圈的半径为,其平面为竖直的。圆圈上套一小环,其中为。如钢丝圈rw以匀加速度沿竖直方向运动,求小环的相对速度及圈对小环的反作用力。arvR1.34 火车质量为,其功率为常数。如果车所受的阻力为常数,则时间与速度的关系mkf为:()fvvmvfkfvkfmkt002ln=如果和速度成正比,则fv()vfkvfvvkfmvt=02ln2式中为初速度,试证明之。0v1.35 质量为的物体为一锤所击。设锤所加的压力,是均匀地增减的。当在冲击时间的m一半时,增至极大值,以后又均匀减小至零。求物体在各时刻的速率以及压力所作的总P课后答案网功。1.36 检验下列的力是否是保守力。如是,则求出其势能。,()a233206ybxyabzFx=ybxabxzFy43106=218abxyzFz=()b()()()zFyFxFzyxk k k kj j j ji i i iF F F F+=1.37 根据汤川核力理论,中子与质子之间的引力具有如下形式的势能:0()krkerVar,=试求中子与质子间的引力表达式,并与平方反比定律相比较;()a求质量为的粒子作半径为的圆运动的动量矩及能量。()bmaJE1.38 已知作用在质点上的力为zayaxaFzayaxaFzayaxaFzyx333231232221131211+=+=+=式中系数都是常数。问这些应满足什么条件,才有势能存在?如这些条件()3,2,1,=jiaijija满足,试计算其势能。1.39 一质点受一与距离次方成反比的引力作用在一直线上运动。试证此质点自无穷远到23达时的速率和自静止出发到达时的速率相同。aa4a1.40 一质点受一与距离成反比的引力作用在一直线上运动,求其达到点所需的时间。O1.41 试导出下面有心力量值的公式:drdpmhF222=式中为质点的质点,为质点到力心的距离,常数,为力心到轨道切线的垂mr=2rhp直距离。1.42 试利用上题的结果,证明:如质点走一圆周,同时力心位于此圆上,则力与距离五次方成反比。()a如一质点走一对数螺线,而其质点即力心,则力与距离立方成反比。()b1.43 质点所受的有心力如果为+=322rrmF式中及都是常数,并且,则其轨道方程可写成2hkearcos1+=课后答案网试证明之。式中(为积分常数)。222222222,hAkehkahhk=A1.45 如及为质点在远日点及近日点处的速率,试证明asps=psas()e+1()e11.46 质点在有心力作用下运动。此力的量值为质点到力心距离的函数,而质点的速率则r与距离成反比,即。如果,求点的轨道方程。设当时,rav=2a2h()2rh=0rr=。0=1.47某彗星的轨道为抛物线,其近日点距离为地球轨道(假定为圆形)半径的。则此()an1彗星运行时,在地球轨道内停留的时间为一年的32nnnn212+倍,试证明之。试再证任何作抛物线轨道的彗星停留在地球轨道(仍假定为圆形)内的最长时间()b为一年的倍,或约为 76 日。321.48 试根据1.9 中所给出的我国第一颗人造地球卫星的数据,求此卫星在近地点和远地点的速率及以及它绕地球运行的周期(参看 79页)。1v2v1.49 在行星绕太阳的椭圆运动中,如令,式中为周期,TdtEaera=2,cosa为半长轴,为偏心率,为一个新的参量,在天文学上叫做偏近点角。试由能量方程推出eE下面的开普勒方程:EeETsin=1.50 质量为的质点在有心斥力场中运动,式中为质点到力心的距离,为常数。m3rmcrOc当质点离很远时,质点的速度为,而其渐进性与的垂直距离则为(即瞄准距离)。OvO试求质点与的最近距离。O课后答案网第一章习题解答1.1 由题可知示意图如题 1.1.1 图:设开始计时的时刻速度为,由题可知枪弹作匀减速运动设减速度大小为.0va则有:()()+=221210211021221ttattvsattvs由以上两式得11021attsv+=再由此式得()()2121122ttttttsa+=证明完毕.1.2 解 由题可知,以灯塔为坐标原点建立直角坐标如题 1.2.1 图.设船经过小时向东经过灯塔,则向北行驶的船经过小时经过灯塔A0tB+2110t任意时刻船的坐标A,()ttxA15150=0=Ay船坐标,B0=Bx+=ttyB15211150则船间距离的平方AB课后答案网()()222BABAyyxxd+=即()2021515ttd=201521115+tt()202002211225225675900450+=ttttt对时间 求导2dt()()67590090002+=ttdtdd船相距最近,即,所以AB()02=dtddhtt430=即午后 45 分钟时两船相距最近最近距离km22min231543154315+=s1.3 解如题 1.3.2 图()1由题分析可知,点的坐标为C=+=sincoscosayarx又由于在中,有(正弦定理)所以AOBsin2sinar=ryra2sin2sin=课后答案网联立以上各式运用1cossin22=+由此可得ryaxrax22coscos=得12422222222=+ryaxyaxry得22222223yaxraxy=+化简整理可得()()2222222234rayxyax+=此即为点的轨道方程.C(2)要求点的速度,分别求导C=2cossincos2cossinryrrx其中=又因为sin2sinar=对两边分别求导故有cos2cosar=所以22yxV+=4cossincos2cossin2222rrr+=()+=sincossin4coscos22r1.4 解 如题 1.4.1 图所示,课后答案网绕点以匀角速度转动,在上滑动,因此点有一个垂直杆的速度分OLOCABC量22xdOCv+=点速度Cdxddvvv222secseccos+=又因为所以点加速度=C=tansecsec2ddtdva()2222222tansec2dxdxd+=1.5 解 由题可知,变加速度表示为=Ttca2sin1由加速度的微分形式我们可知dtdva=代入得dtTtcdv=2sin1对等式两边同时积分dtTtcdvtv=002sin1可得:(为常数)DTtcTctv+=2cos2D代入初始条件:时,故0=t0=vcTD2=即课后答案网+=12cos2TtTtcv又因为dtdsv=所以=dsdtTtTtc+12cos2对等式两边同时积分,可得:+=tTtTTtcs2sin222121.6 解 由题可知质点的位矢速度r=/v沿垂直于位矢速度=v又因为,即rr=/vrr=即=rvr=(取位矢方向,垂直位矢方向)()()j j j ji i i iv v v va a a ardtdrdtddtd+=i i i ij j j j所以()j j j ji i i ii i i ii i i i rrdtdridtrdrdtd+=+=()dtdrdtdrdtdrrdtdj j j jj j j jj j j jj j j j+=i i i ij j j jj j j j2rrr+=故()()j j j ji i i ia a a a rrrr22+=即沿位矢方向加速度()2 rra=垂直位矢方向加速度()rra2+=对求导rrr2=对求导课后答案网 rrr+=2+=r把代入式中可得rra222/=+=ra1.7解由题可知=sincosryrx对求导sincosrrx=对求导cossinsin2cos2 rrrrx=对求导cossinrry+=对求导sincoscos2sin2 rrrry+=对于加速度,我们有如下关系见题 1.7.1 图a即-+=+=cossinsincosaayaaxrr 对俩式分别作如下处理:,cossin即得-+=cossinsinsincossincoscosaayaaxrr +得sincosyxar +=课后答案网把代入得2 rrar=同理可得 rra2+=1.8 解以焦点为坐标原点,运动如题 1.8.1 图所示F则点坐标M=sincosryrx对两式分别求导yx,+=cossinsincosrryrrx故()()22222cossinsincosrrrryxv+=+=222rr+=如图所示的椭圆的极坐标表示法为()cos112eear+=对 求导可得(利用)又因为r=()()221cos111eaeear+=即()rerea=21cos所以()()2222222221211cos1sinerearrea+=故有()2222224222sin1rearev+=课后答案网()2224221eare=()()1211 2222222erearrea+22r+()()+=2222222221121eearrreear()rrabr=2222即()rarbrv=2(其中为椭圆的半短轴)()baeb,1222=1.9 证质点作平面运动,设速度表达式为j j j ji i i iv v v vyxvv+=令为位矢与轴正向的夹角,所以dtdvdtdvdtdvdtdvdtdyyxxj j j jj j j ji i i ii i i iv v v va a a a+=j j j ji i i i+=xyyxvdtdvvdtdv所以j j j ji i i ia a a a+=xyyxvdtdvvdtdv()j j j ji i i iyxvv+yxyyyxxxvvdtdvvvvdtdvv+=dtdvvdtdvvyyxx+=又因为速率保持为常数,即为常数CCvvyx,22=+对等式两边求导022=+dtdvvdtdvvyyxx所以0=v v v va a a a即速度矢量与加速度矢量正交.1.10 解 由题可知运动轨迹如题 1.10.1 图所示,课后答案网则质点切向加速度dtdvat=法向加速度,而且有关系式2nva=2v2kdtdv=又因为()232y1y1+=2pxy2=所以ypy=32ypy=联立2322322yp1yp2kvdtdv+=又dydvydtdydydvdtdv=把两边对时间求导得2pxy2=pyyx=又因为222yxv+=所以22221pyvy+=把代入课后答案网23223222122121+=+ypypkvdydvpyv既可化为222pydykpvdv+=对等式两边积分222pydykpvdvppvu+=所以kuev=1.11 解 由题可知速度和加速度有关系如图 1.11.1 所示=cossin2adtdvaarvatn两式相比得dtdvrv=cos1sin2即2cot1vdvdtr=对等式两边分别积分200cot1vdvdtrvvt=即cot110rtvv=此即质点的速度随时间而变化的规律.1.12 证 由题 1.11 可知质点运动有关系式课后答案网=cossin2adtdvarv所以,联立,有ddvdtdddvdtdv=cossin2rvddv=又因为rv=所以,对等式两边分别积分,利用初始条件时,dvdvcot=0=t0=()cot00=evv1.13 证()当,即空气相对地面上静止的,有.式中a00=v牵相绝v v v vv v v vv v v v+=绝v质点相对静止参考系的绝对速度,指向点运动参考系的速度,指运动参相v牵v考系相对静止参考系的速度.可知飞机相对地面参考系速度:=,即飞机在舰作匀速直线运动.所以绝vv飞机来回飞行的总时间.vlt=20()假定空气速度向东,则当飞机向东飞行时速度b01v v v vv v v vv v v v+=飞行时间01vvlt+=当飞机向西飞行时速度0vvvvv=+=牵相飞行时间02vvlt=故来回飞行时间021vvlttt+=+=0vvl+2022vvlv=即课后答案网2200220112vvtvvvlt=同理可证,当空气速度向西时,来回飞行时间22001vvtt=(c)假定空气速度向北.由速度矢量关系如题 1.13.1 图v v v vv v v vv v v v+=0绝202vvv=所以来回飞行的总时间2022vvlt=2200220112vvtvvvl=同理可证空气速度向南时,来回飞行总时间仍为22001vvtt=1.14 解正方形如题 1.14.1 图。由题可知设风速,当飞机hkmvv/28=风牵BAhkmv/100=相,BAhkmhkmv/128/)28100(1=+=hkmhkmvDB/96/28100,222=hkmhkmvDC/72/)28100(,3=课后答案网=4,vADhkmhkm/96/2810022=故飞机沿此边长 6正方形飞行一周所需总时间hkm/min16515192499667269661286=+=hht1.15 解 船停止时,干湿分界线在蓬前 3,由题画出速度示意图如题.15.1 图船雨相雨绝vvv+=故()()=+sinsin雨绝船vv又因为,所以2=+()cossin+=雨绝船vv由图可知51cos,52244cos22=+=54cos,53sin=smv/8=雨绝所以=8cos)cossincos(sin+=雨绝船vvsm/课后答案网1.16 解以一岸边为轴,垂直岸的方向为轴.建立如题 1.16.1 图所示坐标系xy.所以水流速度()=dydydkdykyv220又因为河流中心处水流速度为c=22ddkdkc所以。当时,即dck2=20dyydcv2=水-=utyydcdtdx2得,两边积分tdtdcudx2=tdtdcudxtx200=2tdcux=联立,得=202dyyudcx同理,当时,即2dyd()yddcv=2水()()utddcyddcdtdx=22()dtutddcdx=2()为一常数DDudcyyucx+=22由知,当时,代入得2dy=ucdx4=课后答案网ucdD2=有,udcyyucx22=ucd2dyd2所以船的轨迹=dyducdyudcyucxdyyudcx2222022船在对岸的了;靠拢地点,即时有dy=ucdx2=1.17 解 以为极点,岸为极轴建立极坐标如题.17.1 图.A船沿垂直于 的方向的速度为,船沿径向方向的速度为和沿径向r r r rsinC1r r r r2C1C的分量的合成,即-=211cossinCCdtdrCdtdr/得,对两积分:dCCrdr=cotsin12CCCr+=sinln2tanlnln12设为常数,即CkCC,2,12=Crkk+=+11cos2sinlnln代入初始条件时,.设有得0rr=0=,200=,cos2sinlnln01010+=kkrC0101110sincoscossin+=课后答案网1.18解 如题 1.18.1 图质点沿下滑,由受力分析我们可知质点下滑的加速度为.设竖直线OAcosga=,斜槽,易知,由正弦定理hOB=sOA=,2,2+=OABOBA+=2sin2sinhs即()=coscoshs又因为质点沿光滑面下滑,即质点做匀速直线运动.OA所以22cos2121tgats=有()0coscoscos212=htg欲使质点到达点时间最短,由可知,只需求出A()=coscoscos22ght的极大值即可,令()coscos()sinsincoscoscoscoscos+=ysin2sin21coscos2+=y把对求导y()sin22cos21cossincos2+=ddy极大值时,故有0=ddy2sintan=由于是斜面的夹角,即20,课后答案网所以2=1.19 解质点从抛出到落回抛出点分为上升和下降阶段.取向上为正各力示意图如题 1.19.1 图,上升时下降时题 1.19.1 图则两个过程的运动方程为:上升22ygmkmgym=下降:22ygmkmgym+=对上升阶段:()221vkgdtdv+=()221vkgdyvdvdtdydydv+=即gdyvkvdv=+221对两边积分gdyvkvdvhv=+022010所以()20221ln21vkgkh+=即质点到达的高度课后答案网对下降阶段:22gvkgdyvdvdtdydydv=即gdyvkvdvhv=022011()21221ln21vkgkh=由=可得202011vkvv+=1.20 解 作子弹运动示意图如题 1.20.1 图所示.题 1.20.1 图水平方向不受外力,作匀速直线运动有tvd=coscos0竖直方向作上抛运动,有2021sinsingttvd=由得coscos0vdt=代入化简可得()220cossincos2=gvd因为子弹的运动轨迹与发射时仰角有关,即是的函数,所以要求的最大dd值.把对求导,求出极值点课后答案网()()0coscossinsincos2220=+=gvddd即()()=coscossinsin()02cos=所以,代入的表达式中可得:24+=d+=24sin24coscos2220maxgvd=2sin24sin22220gv=24sec2220gv此即为子弹击中斜面的地方和发射点的距离的最大值d1.21 解 阻力一直与速度方向相反,即阻力与速度方向时刻在变化,但都在轨道上没点切线所在的直线方向上,故用自然坐标比用直角坐标好.轨道的切线方向上有:sinmgmkvdtdvm=轨道的法线方向上有:cos2mgrvm=由于角是在减小的,故ddsr=由于初末状态由速度与水平方向夹角来确定,故我们要想法使变成关于的等式课后答案网由dsdv
展开阅读全文