1、四边形核心知识矩形:有一个角是直角的平行四边形叫做矩形,也说是长方形矩形的性质:矩形的四个角都是直角;矩形的对角线相等矩形的对角线相等且互相平分。特别提示:直角三角形斜边上的中线等于斜边的一半矩形具有平行四边形的一切性质矩形的判定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形:有一组邻边相等的平行四边形叫做菱形(菱形是平行四边形:一组邻边相等)性质:菱形的四条边都相等菱形的两条对角线互相垂直平分,并且每一条对角线平分一组对角。菱形的判定方法:一组邻边相等的平行四边形是菱形对角线互相垂直平分的平行四边形是菱形对角线互相垂直平分的四边形是菱形四条
2、边都相等的四边形是菱形正方形:定义:四条边都相等,四个角都是直角的四边形是正方形。性质:正方形既有矩形的性质,又有菱形的性质。正方形是轴对称图形,其对称轴为对边中点所在的直线或对角线所在的直线,也是中心对称图形,对称中心为对角线的交点。梯形:定义:一组对边平行,另一组对边不平行的四边形叫做梯形。等腰梯形:两腰相等的梯形是等腰梯形。直角梯形:有一个角是直角的梯形是直角梯形等腰梯形的性质:等腰梯形是轴对称图形,上下底的中点连线所在的直线是对称轴,等腰梯形同一底边上的两个角相等。等腰梯形的两条对角线相等。等腰梯形的判定定理同一底上两个角相等的梯形是等腰梯形等腰梯形的判定方法:先判定它是梯形,再用两腰相等或同一底上的两个角相等来判定它是等腰梯形。解决梯形问题常用的方法:1.“平移腰”把梯形分成一个平行四边形和一个三角形2.“作高”:使两腰在两个直角三角形中3.平移对角线”:使两条对角线在同一个三角形中4.“延腰”构造具有公共角的两个三角形5.“等积变形”:连接梯形上底一端点和另一腰中点,并延长与下底延长线交于一点,构成三角形。知识结构图: