资源描述
面积最大值巩固练习
1、如图,抛物线y=(x+1)2+k 与x轴交于A、B两点,与y轴交于点C (0,-3).
(1)求抛物线的对称轴及k的值; (2)抛物线的对称轴上存在一点P,使得PA+PC的值最小,求此时点P的坐标; (3)点M是抛物线上一动点,且在第三象限.
① 当M点运动到何处时,△AMB的面积最大?求出△AMB的最大面积及此时点M的坐标;
② 当M点运动到何处时,四边形AMCB的面积最大?求出四边形AMCB的最大面积及此时点M的坐标.
2、如图1,在平面直角坐标系中,二次函数y=ax2+bx+c(a>0)的图象顶点为D,与y轴交于点C,与x轴交于点A、B,点A在原点的左侧,点B的坐标为(3,0),OB=OC,tan∠ACO=1/3.
(1)求这个二次函数的解析式;
(2)若平行于x轴的直线与该抛物线交于点M、N,且以MN为直径的圆与x轴相切,求该圆的半径长度;
(3)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上的一动点,当点P运动到什么位置时,△AGP的面积最大?求此时点P的坐标和△AGP的最大面积.
展开阅读全文