1、第三单元 因数与倍数一、教学内容教材第3051页的“例1例12”以及练习五七。二、教材分析本单元主要教学因数和倍数,以及公因数和公倍数等内容。本单元内容大体分三段安排:第一段,认识因数和倍数,学习在1100的自然数中有序地找出10以内某个数的所有倍数,以及100以内某个数的所有因数;探索2、5、和3的倍数的特征,学习判断一个数是不是2、5或3的倍数,同时认识奇数和偶数。第二段,认识质数、合数和质因数,学习把一个合数分解质因数。第三段,认识公因数和最大公因数,探索求两个数的最大公因数的方法;认识公倍数和最小公倍数,探索求两个数的最小公倍数的方法。最后,安排了全单元内容的整理与练习。三、学情分析本
2、单元内容是在学生已经认识了亿以内的数,以及学习了整数四则运算的基础上进行教学的。学习本单元内容,又为后续学习分数的基本性质、约分和通分,以及分数四则运算打下基础。四、教学目标1. 使学生经历探索非0自然数的有关特征的活动,知道因数和倍数的含义;能找出100以内某个自然数的所有因数,能在1100的自然数中找出10以内某个数的所有倍数;知道2、5和3的倍数的特征,能判断一个数是不是2、5或3的倍数;了解奇数和偶数、质数和合数的含义,会分解质因数。2. 使学生通过具体的操作和交流活动,认识公因数与最大公因数、公倍数与最小公倍数;会求100以内两个数的最大公因数和10以内两个数的最小公倍数。3. 使学
3、生在探索和发现数学知识的过程中,积累数学活动的经验,培养观察、比较、分析和归纳的能力,感受一些简单的数学思想,进一步发展数感。4. 使学生在参与学习活动的过程中,培养主动与他人合作交流的意识,体验数学学习活动的乐趣,增强对数学学习的自信心。五、教学重、难点教学重点:掌握倍数和倍数、质数和合数、最大公因数和最小公倍数等概念的联系和区别,掌握求两个数最大公因数和最小公倍数的基本方法。教学难点:根据数的特点合理灵活地确定两个数的最大公因数和最小公倍数,以及根据对最大公因数和最小公倍数的理解正确解答相关的实际问题。六、课时安排因数和倍数1课时2和5的倍数的特征1课时3的倍数的特征1课时因数和倍数练习1
4、课时质数和和合数1课时分解质因数1课时公因数和最大公因数2课时公倍数和最小公倍数2课时因数与倍数整理与练习2课时和与积的奇偶性1课时第一课时 因数和倍数教学内容: 苏教版义务教育教科书数学五年级下册第3032页例1、例2和“试一试”、例3和“试一试”“练一练”,第35页练习五第14题。教学目标: 1使学生认识倍数和因数,能判断两个自然数间的因数和倍数关系;学会找一个数的因数和倍数的方法,能按顺序找出100以内自然数的所有因数,10以内自然数的所有倍数;了解一个数的因数、倍数的特点。 2使学生经历探索求一个数的因数或倍数的方法、一个数的因数和倍数特点的过程,体会数学知识、方法的内在联系,能有条理
5、地展开思考,培养观察、比较,以及分析、推理和抽象、概括等思维能力,发展数感。 3使学生主动参与操作、思考、探索等活动,获得解决问题的成功感受,树立学好数学的信心,养成乐于思考、勇于探究等良好品质。教学重点: 认识因数和倍数。教学难点: 求一个数的因数、倍数的方法。教学准备: 同桌准备12个同样大的正方形学具。 教学过程: 一、操作引入,认识意义 1操作交流。 引导:你能用12个小正方形拼成一个长方形吗?请同桌两人合作拼一拼,看看每排摆几个,摆了几排,想想有几种拼法,用算式把你的拼法表示出来。 学生操作,用算式表示,教师巡视。 交流:你有哪些拼法?请你说一说,并交流你表示的算式。 结合学生交流,
6、呈现不同拼法,分别板书出积是12的三道乘法算式(包括可以板书除法算式)。 2认识意义。 (1)说明:我们先看43=12。根据43-12,我们就可以说:4和3都是12的因数;反过来,12是4的倍数,也是3的倍数。 要求学生看算式模仿说一说哪个是哪个的因数、倍数,再指名多位学生说一说。(如果交流中出现除法算式,还可以引导学生根据板书的除法算式说一说因数或倍数关系) 让学生集体说一说,体会因数和倍数关系。 (2)启发:现在让你看另外两个算式,你能说一说哪个是哪个的因数,哪个是哪个的倍数吗?同桌互相说说看。 交流:根据62=12可以怎样说?(指名多人说一说,再集体说一说)根据121=12呢? 要求学生
7、看后两个算式集体说一说因数和倍数关系。 (3)小结:从上面可以看出,在整数乘法算式里,两个乘数都是积的因数,积是两个乘数的倍数。它们之间的关系是相互依存的。这就是我们今天学习的新内容:因数和倍数。(板书课题)在研究因数和倍数时,所说的数一般指不是O的自然数。在课题下面板书:(指不是0的自然数) 追问:想一想,上面12的因数都是怎样找到的? 你能根据上面的想法说说12的因数一共有哪几个吗? 说明:从上面算式可以看出,如果要找12的因数,只要想哪两个整数相乘等于12。因为112、26和34都等于12,所以12的因数有1、2.3.4、6、12这6个。(板书:12的因数有:1,2,3,4,6,12)
8、3做“练一练”第1题。 先要求分别看乘法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。 再让学生把乘法算式改写成除法算式,(分别板书除法算式)然后分别看除法算式说说哪个数是哪个数的因数,哪个数是哪个数的倍数。 提问:能单独说8是因数,72是倍数吗?你是怎样想的? 指出:乘法和除法是有联系的算式,根据乘法算式或除法算式,都可以知道谁是谁的因数,谁是谁的倍数。因数和倍数是根据整数乘法或除法算式确定的,表示数与数之间的一种关系,不能单独说谁是因数、谁是倍数,应该表达清楚哪个数是哪个数的因数,哪个数是哪个数的倍数。 二、导探究,学会方法 1找一个数的因数。 (1)出示例2,要求学生找出36的所有
9、因数,并思考是怎样找的。 让学生自己找36的因数,并把所有因数记录下来。有困难时可以和同学商量。 交流:36的所有因数有哪些?说说你是怎样找的。 根据学生的交流,呈现各人找出的因数,并按交流的方法板书所有因数。 比较:你认为这里每人找因数的方法,哪个比较好一点?为什么? 追问:想一想,怎样找一个数的因数可以做到不重复、不遗漏? 说明:找36的所有因数,可以按从小到大的顺序想哪两个数的积是36,一对一对地找,也就是这样想:先想1和36,写在因数的两端;(板书)再想2和18.3和12.4和9、(5可以吗?为什么?)6和6,相同的只要写一个。中间还有吗?(结合说明板书成:36的因数有:1,2,3,4
10、,6,9,12,1 8,36 。) 追问:你能说说找一个数的所有因数时,怎样可以做到不重复、不遗漏吗? 让学生按这样的方法把例2里36的因数补充完整。 提问:现在你能说出36的全部因数了吗?(指名按顺序说一说) 说明:一个数的所有因数,还可以用一个圈表示,请大家看课本上的表示方法,看看是怎样用图表示的。 追问:这个圈里表示的是什么?(呈现36因数的集合图) (2)完成“试一试”。 让学生独立找出1 5和16的所有因数,教师巡视、指导。 交流:15有哪些因数,按怎样的方法想的?16呢?(按一对一对的顺序板书结果) (3)发现特点。 引导:请大家观察这里写出的12、36、1 5和1 6的所有因数,
11、找找有没有什么共同的地方,能不能发现有什么特点?和同桌一起观察、交流。 交流:你发现有什么共同的特点?(学生交流、归纳,如果学生有困难,可以启发:除了最小的因数都是1,还有什么共同点吗?最小的因数是1,最大的因数是它本身,那因数的个数会有什么特点呢?) 指出:一个数的因数,最小的是1,最大的是它本身,个数是有限的. 书呈现) 2找一个数的倍数。 (1)引导:我们已经学会了找一个数的因数,那怎样找一个数的倍数呢?现在请你找出3的倍数,把它们记录下来。大家独立试一试。 学生自己找3的倍数并且记录下来。 交流:你找到的3的倍数有哪些?说说怎样找的o(根据交流,板书学生找到的3的倍数,并发现可以写出很
12、多很多) 你认为哪个找倍数的方法比较好,是怎样找的? 说明:3的倍数是3和一个数相乘的积,我们可以从3的1倍开始按次序列举出3的倍数,31=3,32=6,33-9,这样3的倍数有多少个?为什么会有无数个?那要怎样表示呢?(板书:3的倍数有:3,6,9,12,) 提问:怎样找一个数的倍数?为什么会有无数个? 说明:我们可以用列举的方法,从3的1倍开始依次列举出3的倍数。因为所乘的自然数1,2,3是无限的,所以3的倍数有无数个。在写一个数的倍数时,要用省略号表示出来。 让学生用列举的方法补写例3里3的倍数。 提问:你能按顺序列举3的倍数吗?大家根据填写的倍数集体说一说。 要求学生把3的倍数在课本上
13、的图里表示出来。 交流:这个圈里表示的是什么?在圈里写3的倍数要注意什么?(省略号) (2)完成“试一试”。 让学生独立找出2和5的倍数,教师巡视、指导。 交流:2的倍数有哪些?这是按什么方法找的?5的倍数呢?写一个数的倍数时要注意什么?(按顺序板书2和5的倍数,并注意用省略号表示) 说明:找一个数的倍数可以从乘1开始,依次列举。因为一个数的倍数是无限的,最后要注意用省略号表示。 (3)发现特点。 引导:请大家观察这几个数的倍数,能发现一个数的倍数有什么特点吗? 指出:一个数的倍数,最小的是它本身,没有最大的,个数是无限的。(板书呈现) 三、练习巩固,应用拓展 1做“练一练”第2题和第3题。
14、让学生填写因数和倍数。 交流:这两题你是怎样填的?(呈现结果) 提问:能说说找一个数的因数和找一个数的倍数的方法吗? 一个数最大的因数有什么特点?最小的倍数呢? 说明:求一个数的因数,可以从小到大按顺序找哪两个数的积是这个数;求一个数的倍数可以从乘1开始,依次列举出这个数的倍数。一个数最小的因数是1,最大的因数和最小的倍数都是它本身。 2做练习五第1题。 引导学生了解题意,明确把24人按排数和每排人数填表。 让学生独立完成填表并交流,说说怎样想的,结合呈现表内数据。 提问:这里的排数和每排人数都是24的因数吗?为什么? 指出:依次对应的排数和每排人数相乘的积都是24,所以排数和每排人数都是24
15、的因数。说明找一个数的因数时,可以依次想哪两个数的积是这个数,这样的两个数就是它的因数。 3做练习五第2题。 让学生明确要求,完成填表。 交流结果并呈现,结合让学生说说怎样填的。 提问:每人应付4元,应付元数都是4的倍数吗?你是怎样得出这里的应付元数的? 说明:这里的应付元数都是4的倍数,因为这些对应的元数是把4依次乘1,2,3得到的。把一个数依次乘1,2,3所得的积,就能得出这个数的倍数。 4做练习五第3题。 让学生在圈里填上合适的数。绿 色 圃 中 小 学 教 育 网 http:/www.L 绿色圃中学资源网http:/cz.L 交流:你是怎样填的?(呈现结果) 说明:因为4的倍数是无限的
16、,所以依次写出4的一些倍数后,需要用省略号表示;但50以内7的倍数最大的不会超过50,个数是有限的,所以这个圈里不写省略号。 追问:为什么一个要写省略号,另一个不需要? 5做练习五第4题。 出示第4题。 让学生按要求用相应符号圈出相应的数。 交流并呈现结果。 提问:观察直线上表示出的6的因数和6的倍数,你有什么要说的吗? 指出:6的因数都不大于6;6的倍数都不小于6 . 6是6最大的因数,也是6最小的倍数。 追问:6是6的因数,也是6的倍数,这个说法对不对?8是8的因数,也是8的倍数呢? 6填充。 (1)7的倍数最小是( ),7的因数最大是( )。(2)一个数有因数3,它一定是( )的倍数。(3)8是2的( )数,2就是8的( )数。 四、课堂总结,交流收获 提问:这节课你认识了什么知识,学到了什么方法?在学习过程中有哪些收获和体会? 教学反思: