1、一)运用公式法: 我们知道整式乘法与因式分解互为逆变形。如果把乘法公式反过来就是把多项式分解因式。于是有: a2-b2=(a b)(a-b) a2 2ab b2=(a b)2 a2-2ab b2=(a-b)2 如果把乘法公式反过来,就可以用来把某些多项式分解因式。这种分解因式的方法叫做运用公式法。 (二)平方差公式 1平方差公式 (1)式子: a2-b2=(a b)(a-b) (2)语言:两个数的平方差,等于这两个数的和与这两个数的差的积。这个公式就是平方差公式。 (三)因式分解 1因式分解时,各项如果有公因式应先提公因式,再进一步分解。 2因式分解,必须进行到每一个多项式因式不能再分解为止。
2、 (四)完全平方公式 (1)把乘法公式(a b)2=a2 2ab b2 和 (a-b)2=a2-2ab b2反过来,就可以得到: a2 2ab b2 =(a b)2 a2-2ab b2 =(a-b)2 这就是说,两个数的平方和,加上(或者减去)这两个数的积的2倍,等于这两个数的和(或者差)的平方。 把a2 2ab b2和a2-2ab b2这样的式子叫完全平方式。 上面两个公式叫完全平方公式。 (2)完全平方式的形式和特点 项数:三项 有两项是两个数的的平方和,这两项的符号相同。 有一项是这两个数的积的两倍。 (3)当多项式中有公因式时,应该先提出公因式,再用公式分解。 (4)完全平方公式中的a
3、、b可表示单项式,也可以表示多项式。这里只要将多项式看成一个整体就可以了。 (5)分解因式,必须分解到每一个多项式因式都不能再分解为止。 (五)分组分解法 我们看多项式am an bm bn,这四项中没有公因式,所以不能用提取公因式法,再看它又不能用公式法分解因式 如果我们把它分成两组(am an)和(bm bn),这两组能分别用提取公因式的方法分别分解因式 原式=(am an) (bm bn) a(m n) b(m n) 做到这一步不叫把多项式分解因式,因为它不符合因式分解的意义但不难看出这两项还有公因式(m n),因此还能继续分解,所以 原式=(am an) (bm bn) a(m n) b(m n) (m n)