收藏 分销(赏)

一元次方程实际问题专题训练.doc

上传人:仙人****88 文档编号:6077881 上传时间:2024-11-27 格式:DOC 页数:7 大小:183.87KB 下载积分:10 金币
下载 相关 举报
一元次方程实际问题专题训练.doc_第1页
第1页 / 共7页
一元次方程实际问题专题训练.doc_第2页
第2页 / 共7页


点击查看更多>>
资源描述
22.3实际问题与一元二次方程(第一课时) 姓名 ◆随堂检测 1、一台电视机成本价为元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ) A.(1+25%)(1+70%)元 B.70%(1+25%)元 C.(1+25%)(1-70%)元 D.(1+25%+70%)元 2、某商品原价200元,连续两次降价%后售价为148元,下列所列方程正确的是( ) A.200=148 B.200=148 C.200=148 D.200=148 3、某商场的标价比成本高%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过%,则可用表示为( ) A. B.p C. D. 4、某农户的粮食产量,平均每年的增长率为,第一年的产量为千克,第二年的产量为_______千克,第三年的产量为_______千克,三年总产量为_______千克. 5、据报道,我国农作物秸杆的资源巨大,但合理利用量十分有限,某地区2006年的利用率只有30%,大部分秸杆被直接焚烧了,假定该地区每年产出的农作物秸杆总量不变,且合理利用量的增长率相同,要使2008年的利用率提高到60%,求每年的增长率.(取≈1.41) ◆典例分析 某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营. (1)如果第一年的年获利率为,那么第一年年终的总资金是多少万元?(用代数式来表示)(注:年获利率=×100%) (2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率. 分析:列一元二次方程解一元二次方程的一般步骤(1)审题,(2)设设出未知数,(3)找等量关系列出方程,(4)用适当方法解方程,(5)检验方程的解是否符合题意,将不符合题意的解舍去,(6)答题.要注意各个环节的准确性. ◆课下作业 ●拓展提高 1、一个小组有若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共有( )人. A.12 B.10 C.9 D.8 2、县化肥厂第一季度增产吨化肥,以后每季度比上一季度增产,则第三季度化肥增产的吨数为( ) A. B. C. D. 3、某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为,则可列出方程为________________________. 4、甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元. 5、某公司一月份营业额为10万元,第一季度总营业额为33.1万元,求该公司二、三月份营业额平均增长率是多少? (分析:设该公司二、三月份营业额平均增长率为,那么二月份的营业额就应该是,三月份的营业额应是10.) 6、上海甲商场七月份利润为100万元,九月份的利润为121万元,乙商场七月份利润为200万元,九月份的利润为288万元,那么哪个商场利润的月平均上升率较大? ●体验中考 1、(2009年,太原)某种品牌的手机经过四、五月份连续两次降价,每部售价由3200元降到了2500元.设平均每月降价的百分率为,根据题意列出的方程是________________________. (注意:要理解增长率或降低率问题中的数量关系.) 2、(2009年,广东)某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有81台电脑被感染.请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台? 22.3实际问题与一元二次方程(第二课时) ◆随堂检测 1、长方形的长比宽多4cm,面积为60cm2,则它的周长为________. B C A Q P 2、有两块木板,第一块长是宽的2倍,第二块的长是第一块宽的3倍,宽比第一块的长少2米,已知第二块木板的面积比第一块大108,这两块木板的长和宽分别是( ) A、第一块木板长18米,宽9米,第二块木板长27米,宽16米 B、第一块木板长12米,宽6米,第二块木板长18米,宽10米 C、第一块木板长9米,宽4.5m,第二块木板长13.5m,宽7米 D、以上都不对 3、从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,求原来的正方形铁片的面积是多少? 4、如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半. (点拨:设秒后△PCQ的面积为Rt△ABC面积的一半,△PCQ也是直角三角形.) ●拓展提高 1、矩形的周长为8,面积为1,则矩形的长和宽分别为________. 2、如图,在中,于且是一元二次方程的根,则的周长为( ) A、 B、 C、 D、 A D C EC B 3、某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m. (1)鸡场的面积能达到180m2吗?能达到200m2吗? (2)鸡场的面积能达到210m2吗? 4、某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m. (1)渠道的上口宽与渠底宽各是多少? (2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完? (分析:因为渠深最小,为了便于计算,不妨设渠深为m.) 5、如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰. (1)小岛D和小岛F相距多少海里? (2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇时补给船航行了多少海里?(结果精确到0.1海里) (分析:(1)因为依题意可知△ABC是等腰直角三角形,△DFC也是等腰直角三角形,AC可求,CD就可求,因此由勾股定理便可求DF的长. (2)要求补给船航行的距离就是求DE的长度,DF已求,因此,只要在Rt△DEF中,由勾股定理即可求.) ●体验中考 1、(2009年,青海)在一幅长为80cm,宽为50cm的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩形挂图,如图所示,如果要使整个挂图的面积是5400cm2,设金色纸边的宽为cm,那么满足的方程是( ) A、 B、 C、 D、 2、(2009年,甘肃庆阳)如图,在宽为20米、长为30米的矩形地面上修建两条同样宽的道路,余下部分作为耕地.若耕地面积需要551米2,则修建的路宽应为( ) A、1米 B、1.5米 C、2米 D、2.5米 3、(2008年,庆阳)张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15立方米的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元,问张大叔购回这张矩形铁皮共化了多少元? 22.3实际问题与一元二次方程(第三课时) ◆随堂检测 1、一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( ) A.25 B.36 C.25或36 D.-25或-36 2、一个多边形有9条对角线,则这个多边形有多少条边( ) A、6 B、7 C、8 D、9 3、为了美化环境,某市加大对绿化的投资.2007年用于绿化投资20万元,2009年用于绿化投资25万元,求这两年绿化投资的年平均增长率.设这两年绿化投资的年平均增长率为,根据题意所列方程为( ) A. B. C. D. 4、某辆汽车在公路上行驶,它行驶的路程s(m)和时间(s)之间的关系为:s=,那么行驶200m需要多长时间? (分析:这是一个加速运动,根据已知的路程求时间.因此,只要把s=200代入求关于的一元二次方程即可.) ◆典例分析 一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车. (1)从刹车到停车用了多少时间? (2)从刹车到停车平均每秒车速减少多少? (3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)? ◆课下作业 ●拓展提高 1、为了改善居民住房条件,我市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为提高到若每年的年增长率相同,则年增长率为( ) A. B. C. D. P A B Q C 2、如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2? 3、某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件. (1)若商场平均每天赢利1200元,每件衬衫应降价多少元? (2)每件衬衫降价多少元时,商场平均每天赢利最多? 4、有一批图形计算器,原售价为每台800元,在甲、乙两家公司销售.甲公司用如下方法促销:买一台单价为780元,买两台每台都为760元.依此类推,即每多买一台则所买各台单价均再减20元,但最低不能低于每台440元;乙公司一律按原售价的75%促销.某单位需购买一批图形计算器: (1)若此单位需购买6台图形计算器,应去哪家公司购买花费较少? (2)若此单位恰好花费7500元,在同一家公司购买了一定数量的图形计算器,请问是在哪家公司购买的,数量是多少? ●体验中考 1、(2009年,甘肃定西)在实数范围内定义运算“”,其法则为:,求方程(43)的解. (点拨:本题是新定义运算,将一元二次方程的求解问题应用到了新定义运算的领域,具有一定的综合性.) 2、(2009年,湖州)随着人民生活水平的不断提高,我市家庭轿车的拥有量逐年增加.据统计,某小区2006年底拥有家庭轿车64辆,2008年底家庭轿车的拥有量达到100辆. (1)若该小区2006年底到2009年底家庭轿车拥有量的年平均增长率都相同,求该小区到2009年底家庭轿车将达到多少辆? (2)为了缓解停车矛盾,该小区决定投资15万元再建造若干个停车位.据测算,建造费用分别为室内车位5000元/个,露天车位1000元/个,考虑到实际因素,计划露天车位的数量不少于室内车位的2倍,但不超过室内车位的2.5倍,求该小区最多可建两种车位各多少个?试写出所有可能的方案. 7
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服