资源描述
“三角形的内角和”教案
岑溪市马路镇义垌小学 关善宇
【教学内容】《义务教育课程标准实验教科书 数学(苏教版)》四年级下册第五单元第28--29页
【教学目标】
1、通过"量一量","算一算","拼一拼","折一折"的方法, 让学生推理归纳出三角形内角和是180°,并能应用这一知识解决一些简单问题。
2、通过把三角形的内角和转化为平角进行探究实验,渗透"转化"的数学思想。
3、通过数学活动使学生获得成功的体验,增强自信心,培养学生的创新意识,探索精神和实践能力。
【教学重难点】理解并掌握三角形的内角和是180度
【教具学具准备】多媒体课件、各类三角形、长方形、正方形、量角器、剪刀、固体胶、活动记录表等。
【教学流程】
(一)创设情境,激发兴趣
现在正是春暖花开,万物复苏的季节。在这美好的日子里,我们相聚在这里,老师非常高兴认识大家,你看把蝴蝶也引来了。(课件)
师:请大家仔细观察,它把这条绳子围成了什么三角形?(课件)
师:请大家仔细想一想,这三个三角形在围的过程中什么变了?什么没变?
生答:
师:这节课我们一起来研究三角形的内角和。(板书:三角形的内角和)
(二)动手操作,探索新知
1、 揭示“内角”和“内角和”的概念
(1)“内角”的概念
(师手拿一个三角形)这个三角形的内角在哪?谁来指给大家看。一个三角形有几个内角啊?
每人从学具筐中任选一个三角形,指出它的内角。
(2)“内角和”的概念
师:大家知道了什么是三角形的内角,那什么叫“内角和”呢?
师小结:三角形的内角和就是三个内角的度数之和。
2、猜测内角和
(1)师拿一个锐角三角形问:大家猜一猜这个锐角三角形的内角和是多少度?有不同想法吗?
(2)直角三角形与钝角三角形同上。
(3)师:看来大家都认为三角形的内角和是180º,但这仅仅是我们的一种猜测,有了猜测就可以下结论了吗?我们还需要进一步的验证。
3、动手验证,汇报交流
(1)介绍学具筐
老师为每个小组准备了一个学具筐,里面有不同的学习材料,或许这些材料会对你有所启发,帮助你想出好办法。每人现在都认真的想一想,你打算怎样来验证三角形的内角和不是180º呢?
(2)生独立思考,动手操作
(3)组内交流
经过独立思考和动手操作,每人都有了自己的验证方法,先在小组内交流各自的验证方法。
4、全班汇报交流
师:来吧孩子们,该到全班交流的时候了。谁愿意先把自己的方法与大家一起分享。
A、测量法
活 动 记 录 表
三角形的形状 每个内角的度数 三个内角和
∠1 ∠2 ∠3
学生汇报测量结果。
师:刚才大家都认为三角形的内角和是180度,但量的结果有的是180度,有的不是180度,这是怎么原因呢?
生发表观点
师小结:看来采用测量的方法会有误差,学习数学要用这种严谨的态度来对待,咱们再看看别的方法。
B、撕拼法
请用撕拼方法的学生上台展示撕拼的过程。
师:你是怎么想到把三角形撕下来拼成一个平角来验证的呢?
师评价:你把本不在一起的三个角,通过移动位置,把它转化成一个平角来验证,还用了转化的思想,你真了不起。
师:通过他们三个人的验证,你得到了什么结论?
C、其他方法
师:条条大路通罗马,还有别的验证方法吗?
如果学生出现把两个完全相同的直角三角形拼成一个长方形来验证。
师追问:这种方法真的很简单,但它只能证明哪一类的三角形呢?
5、科学验证方法
师:不同的方法,同样的精彩,大家发现了吗?无论是撕一撕、折一折、还是拼一拼,这些方法都有异曲同工之妙,那就是你们都用了转化的策略。我发现你们都有数学家的头脑,知道吗?数学家在证明这一猜想时,也用了转化的思想,一起来看(看课件)
(三)课外拓展,积淀文化
师:知道三角形内角和的秘密最早是由谁发现的吗?(放课件)
师:善于数学发现和思考使帕斯卡走上了成功的道路。这节课才10岁的我们也用自己的智慧发现了帕斯卡12岁时的数学发现,我们同样了不起,老师为大家感到骄傲。
(四)应用新知,解决问题
知道了这个结论可以帮助我们解决那些问题呢?
1、把两个小三角形拼成一个大三角形,大三角形的内角和是多少度?为什么?
师:大三角形的内角是哪些?指出来
师:当把两个三角形拼在一起时,消失了两个内角,正好是180°,所以大三角形的内角和还是180度,如果把三角形分成两个小三角形呢?
师小结:三角形无论大小,内角和都是180°。
2、想一想,做一做
在一个三角 形ABC中, 已知ے A ═45° , ے B ═85º ,求ےс 的度数。
在一个直角三角形中, 已知ےс═52º ,求 ے Α 的度 数。
爸爸给小红买了一个等腰三角形的风筝。它的一个底角是70°,它的顶角是多少度?
3、思考:
你能画出一个有两个直角或两个钝角的三角形吗?为什么?
(五)全课小结,完善新知
1.学生谈收获
2.师小结
今天我们收获的不仅仅是知识上的,还有情感上的,思想方法上的,还认识了一位了不起的科学家帕斯卡,因为他的好奇与不满足让我们记住了他。相信在座的每一位只要你拥有善于发现的眼睛,勤于思考的大脑,勇于实践的双手,将来某一天你也会像他一样伟大。
展开阅读全文