1、第一章 实数重点 实数的有关概念及性质,实数的运算内容提要一、 重要概念 1数的分类及概念 数系表:说明:“分类”的原则:相称(不重、不漏)有标准2非负数:正实数与零的统称。(表为:x0) 常见的非负数有:性质:若干个非负数的和为0,则每个非负担数均为0。3倒数:定义及表示法性质:A. (a1); B. 中,a0; C. 0a1; a1时, 1; D.a与 乘积为1。4相反数:定义及表示法性质: A. a0时,a-a; B.a与-a在数轴上的位置; C.和为0,商为-1(0除外)。5数轴:定义(“三要素”)作用:A.直观地比较实数的大小;B.明确体现绝对值意义;C.建立点与实数的一一对应关系。
2、6奇数、偶数、质数、合数(正整数自然数)定义及表示:奇数:2n-1 偶数:2n(n为自然数)7绝对值:定义(两种):代数定义:正数和0的绝对值是它本身,负数的绝对值是它的相反数.互为相反数的两个数的绝对值相等a的绝对值用“|a |”表示读作“a的绝对值”几何定义:数a的绝对值顶的几何意义是实数a在数轴上所对应的点到原点的距离。a0,符号“”是“非负数”的标志;数a的绝对值只有一个;处理任何类型的题目,只要其中有“”出现,其关键一步是去掉“”符号。二、 实数的运算 1 运算法则(加、减、乘、除、乘方、开方)2 运算定律(五个加法乘法交换律、结合律;乘法对加法的 分配律)3 运算顺序:A.高级运算
3、到低级运算;B.(同级运算)从“左” 到“右”(如5 5);C.(有括号时)由“小”到“中”到“大”。三、 应用举例(略)1 已知:a、b、x在数轴上的位置如下图,求证:x-a+x-b =b-a.2.已知:a-b=-2且ab0时,an 0;a0(n是偶数), an 0)(正用、逆用)10根式运算法则:加法法则(合并同类二次根式);乘、除法法则;分母有理化:A. ;B. ;C. .三、 应用举例(略) 四、 数式综合运算(略) 第三章 统计初步重点内容提要一、 重要概念 1.总体:考察对象的全体。2.个体:总体中每一个考察对象。3.样本:从总体中抽出的一部分个体。4.样本容量:样本中个体的数目。
4、5.众数:一组数据中,出现次数最多的数据。6.中位数:将一组数据按大小依次排列,处在最中间位置的一个数(或最中间位置的两个数据的平均数)二、 计算方法 1.样本平均数: ;若 , ,则 (a常数, , , 接近较整的常数a);加权平均数:;平均数是刻划数据的集中趋势(集中位置)的特征数。通常用样本平均数去估计总体平均数,样本容量越大,估计越准确。2样本方差: ;若,则 (a接近 、 、 的平均数的较“整”的常数);若 、 、 较“小”较“整”,则 ;样本方差是刻划数据的离散程度(波动大小)的特征数,当样本容量较大时,样本方差非常接近总体方差,通常用样本方差去估计总体方差。3样本标准差三、 应用
5、举例(略) 第四章 直线形重点1相交线与平行线、三角形、四边形的有关概念、判定、性质。内容提要一、 直线、相交线、平行线 1线段、射线、直线三者的区别与联系 从“图形”、“表示法”、“界限”、“端点个数”、“基本性质”等方面加以分析。2线段的中点及表示3直线、线段的基本性质(用“线段的基本性质”论证“三角形两边之和大于第三边”)4两点间的距离(三个距离:点-点;点-线;线-线)5角(平角、周角、直角、锐角、钝角)6互为余角、互为补角及表示方法7角的平分线及其表示8垂线及基本性质(利用它证明“直角三角形中斜边大于直角边”)9对顶角及性质10平行线及判定与性质(互逆)(二者的区别与联系)11常用定
6、理:同平行于一条直线的两条直线平行(传递性);同垂直于一条直线的两条直线平行。12定义、命题、命题的组成13公理、定理14逆命题 二、 三角形 分类:按边分; 按角分二、三角形1定义(包括内、外角)2三角形的边角关系:角与角:内角和及推论;外角和;n边形内角和;n边形外角和。边与边:三角形两边之和大于第三边,两边之差小于第三边。角与边:在同一三角形中,3三角形的主要线段讨论:定义线的交点三角形的心性质 高线中线角平分线中垂线中位线 一般三角形特殊三角形:直角三角形、等腰三角形、等边三角形4特殊三角形(直角三角形、等腰三角形、等边三角形、等腰直角三角形)的判定与性质5全等三角形 一般三角形全等的
7、判定(SAS、ASA、AAS、SSS) 特殊三角形全等的判定:一般方法专用方法6三角形的面积 一般计算公式性质:等底等高的三角形面积相等。7重要辅助线 中点配中点构成中位线;加倍中线;添加辅助平行线8证明方法直接证法:综合法、分析法间接证法反证法:反设归谬结论 证线段相等、角相等常通过证三角形全等证线段倍分关系:加倍法、折半法 证线段和差关系:延结法、截余法 证面积关系:将面积表示出来三、 四边形 分类表:1一般性质(角) 内角和:360 顺次连结各边中点得平行四边形。推论1:顺次连结对角线相等的四边形各边中点得菱形。推论2:顺次连结对角线互相垂直的四边形各边中点得矩形。外角和:3602特殊四
8、边形 研究它们的一般方法: 平行四边形、矩形、菱形、正方形;梯形、等腰梯形的定义、性质和判定 判定步骤:四边形平行四边形矩形正方形 菱形 对角线的纽带作用:3对称图形 轴对称(定义及性质);中心对称(定义及性质)4有关定理:平行线等分线段定理及其推论1、2 三角形、梯形的中位线定理 平行线间的距离处处相等。(如,找下图中面积相等的三角形)5重要辅助线:常连结四边形的对角线;梯形中常“平移一腰”、“平移对角线”、“作高”、“连结顶点和对腰中点并延长与底边相交”转化为三角形。6作图:任意等分线段。四、 应用举例(略) 第五章 方程(组)重点一元一次、一元二次方程,二元一次方程组的解法;方程的有关应
9、用题(特别是行程、工程问题)内容提要一、 基本概念 1方程、方程的解(根)、方程组的解、解方程(组)2 分类:二、 解方程的依据等式性质 1a=ba+c=b+c2a=bac=bc (c0)三、 解法1一元一次方程的解法:去分母去括号移项合并同类项 系数化成1解。2 元一次方程组的解法:基本思想:“消元”方法:代入法 加减法四、 一元二次方程 1定义及一般形式:2解法:直接开平方法(注意特征)配方法(注意步骤推倒求根公式)公式法:1.化方程为一般式ax2-bx+c=02.确定判别式,计算b2-4ac;3.若b2-4ac0,代入公式 ;若b2-4acb、ab、axba+cb+c abacbc(c0
10、) abacbc(cb,bcac ab,cda+cb+d.5一元一次不等式的解、解一元一次不等式6一元一次不等式组的解、解一元一次不等式组(在数轴上表示解集)7应用举例(略)第七章 相似形重点相似三角形的判定和性质 内容提要一、本章的两套定理 第一套(比例的有关性质):涉及概念:第四比例项比例中项比的前项、后项,比的内项、外项黄金分割等。第二套:注意:定理中“对应”二字的含义; 平行相似(比例线段)平行。相似三角形性质1对应线段;2对应周长;3对应面积。相关作图作第四比例项;作比例中项。证(解)题规律、辅助线 1“等积”变“比例”,“比例”找“相似”。2找相似找不到,找中间比。方法:将等式左右
11、两边的比表示出来。 3添加辅助平行线是获得成比例线段和相似三角形的重要途径。4对比例问题,常用处理方法是将“一份”看着k;对于等比问题,常用处理办法是设“公比”为k。5对于复杂的几何图形,采用将部分需要的图形(或基本图形)“抽”出来的办法处理。五、 应用举例(略) 第八章 函数及其图象重点正、反比例函数,一次、二次函数的图象和性质。内容提要一、平面直角坐标系 1各象限内点的坐标的特点2坐标轴上点的坐标的特点3关于坐标轴、原点对称的点的坐标的特点4坐标平面内点与有序实数对的对应关系二、函数 1表示方法:解析法;列表法;图象法。2确定自变量取值范围的原则:使代数式有意义;使实际问题有 意义。3画函
12、数图象:列表;描点;连线。三、几种特殊函数 (定义图象性质) 1 正比例函数定义:y=kx(k0) 或y/x=k。图象:直线(过原点)性质:k0,k0,k0时,开口向上;a0时,在对称轴左侧,右侧;a0时,图象位于,y随x;k0时,图象位于,y随x;两支曲线无限接近于坐标轴但永远不能到达坐标轴。四、重要解题方法 1 用待定系数法求解析式(列方程组求解)。对求二次函数的解析式,要合理选用一般式或顶点式,并应充分运用抛物线关于对称轴对称的特点,寻找新的点的坐标。2利用图象一次(正比例)函数、反比例函数、二次函数中的k、b;a、b、c的符号。五、应用举例(略) 第九章 解直角三角形重点解直角三角形
13、内容提要一、三角函数 1定义:在RtABC中,C=Rt,则sinA= ;cosA= ;tgA= ;ctgA= .2 特殊角的三角函数值:30度 45度 60度sin 根号1/2 根号2/2 根号3/2 根号1到根号3 根号里的数依次增大cos 根号3/2 根号2/2 根号1/2 根号3到根号1 根号里的书依次减小tan 根号3/3 根号9/3 根号27/3 根号里的数为3的1次方,3的2次方,3的3次方3 互余两角的三角函数关系:sin(90-)=cos;4 三角函数值随角度变化的关系 15查三角函数表二、解直角三角形1 定义:已知边和角(两个,其中必有一边)所有未知的边和角。2 依据:边的关
14、系:角的关系:A+B=90边角关系:三角函数的定义。注意:尽量避免使用中间数据和除法。三、对实际问题的处理1 俯、仰角:2方位角、象限角:3坡度:4在两个直角三角形中,都缺解直角三角形的条件时,可用列方程的办法解决。四、应用举例(略)第十章 圆重点圆的重要性质;直线与圆、圆与圆的位置关系;与圆有关的角的定理;与圆有关的比例线段定理。内容提要一、圆的基本性质1圆的定义(两种)2有关概念:弦、直径;弧、等弧、优弧、劣弧、半圆;弦心距;等圆、同圆、同心圆。3“三点定圆”定理4垂径定理及其推论5“等对等”定理及其推论与圆有关的角:圆心角定义(等对等定理)圆周角定义(圆周角定理,与圆心角的关系)弦切角定
15、义(弦切角定理)二、直线和圆的位置关系 1.三种位置及判定与性质:2.切线的性质(重点)3.切线的判定定理(重点)。圆的切线的判定有4切线长定理三、圆换圆的位置关系 1.五种位置关系及判定与性质:(重点:相切)2.相切(交)两圆连心线的性质定理3.两圆的公切线:定义性质四、与圆有关的比例线段 1.相交弦定理2.切割线定理五、与和正多边形 1.圆的内接、外切多边形(三角形、四边形)2.三角形的外接圆、内切圆及性质3.圆的外切四边形、内接四边形的性质4.正多边形及计算 中心角:内角的一半:(解RtOAM可求出相关元素,、 等)六、 一组计算公式 1.圆周长公式2.圆面积公式3.扇形面积公式4.弧长
16、公式5.弓形面积的计算方法6.圆柱、圆锥的侧面展开图及相关计算七、 点的轨迹 六条基本轨迹 八、 有关作图 1.作三角形的外接圆、内切圆2.平分已知弧3.作已知两线段的比例中项4.等分圆周:4、8;6、3等分九、 基本图形 十、 重要辅助线1.作半径2.见弦往往作弦心距3.见直径往往作直径上的圆周角4.切点圆心莫忘连5.两圆相切公切线(连心线)6.两圆相交公共弦十一、应用举例(略)5学习方法编辑概念口诀有理数的加法运算同号两数来相加,绝对值加不变号。异号相加大减小,大数决定和符号。互为相反数求和,结果是零须记好。【注】“大”减“小”是指绝对值的大小。有理数的减法运算减正等于加负,减负等于加正。
17、有理数的乘法运算符号法则同号得正异号负,一项为零积是零。合并同类项说起合并同类项,法则千万不能忘。只求系数代数和,字母指数留原样。去、添括号法则去括号或添括号,关键要看连接号。扩号前面是正号,去添括号不变号。括号前面是负号,去添括号都变号。解方程已知未知闹分离,分离要靠移完成。移加变减减变加,移乘变除除变乘。平方差公式两数和乘两数差,等于两数平方差。积化和差变两项,完全平方不是它。完全平方公式二数和或差平方,展开式它共三项。首平方与末平方,首末二倍中间放。和的平方加联结,先减后加差平方。完全平方公式首平方又末平方,二倍首末在中央。和的平方加再加,先减后加差平方。解一元一次方程先去分母再括号,移
18、项变号要记牢。同类各项去合并,系数化“1”还没好。求得未知须检验,回代值等才算了。解一元一次方程先去分母再括号,移项合并同类项。系数化1还没好,准确无误不白忙。因式分解与乘法和差化积是乘法,乘法本身是运算。积化和差是分解,因式分解非运算。因式分解两式平方符号异,因式分解你别怕。两底和乘两底差,分解结果就是它。两式平方符号同,底积2倍坐中央。因式分解能与否,符号上面有文章。同和异差先平方,还要加上正负号。同正则正负就负,异则需添幂符号。因式分解一提二套三分组,十字相乘也上数。四种方法都不行,拆项添项去重组。重组无望试求根,换元或者算余数。多种方法灵活选,连乘结果是基础。同式相乘若出现,乘方表示要
19、记住。【注】 一提(提公因式)二套(套公式)因式分解一提二套三分组,叉乘求根也上数。五种方法都不行,拆项添项去重组。对症下药稳又准,连乘结果是基础。二次三项式的因式分解先想完全平方式,十字相乘是其次。两种方法行不通,求根分解去尝试。比和比例两数相除也叫比,两比相等叫比例。外项积等内项积,等积可化八比例。分别交换内外项,统统都要叫更比。同时交换内外项,便要称其为反比。前后项和比后项,比值不变叫合比。前后项差比后项,组成比例是分比。两项和比两项差,比值相等合分比。前项和比后项和,比值不变叫等比。解比例外项积等内项积,列出方程并解之。求比值由已知去求比值,多种途径可利用。活用比例七性质,变量替换也走
20、红。消元也是好办法,殊途同归会变通。正比例与反比例商定变量成正比,积定变量成反比。正比例与反比例变化过程商一定,两个变量成正比。变化过程积一定,两个变量成反比。判断四数成比例四数是否成比例,递增递减先排序。两端积等中间积,四数一定成比例。判断四式成比例四式是否成比例,生或降幂先排序。两端积等中间积,四式便可成比例。比例中项成比例的四项中,外项相同会遇到。有时内项会相同,比例中项少不了。比例中项很重要,多种场合会碰到。成比例的四项中,外项相同有不少。有时内项会相同,比例中项出现了。同数平方等异积,比例中项无处逃。根式与无理式表示方根代数式,都可称其为根式。根式异于无理式,被开方式无限制。被开方式
21、有字母,才能称为无理式。无理式都是根式,区分它们有标志。被开方式有字母,又可称为无理式。求定义域求定义域有讲究,四项原则须留意。负数不能开平方,分母为零无意义。指是分数底正数,数零没有零次幂。限制条件不唯一,满足多个不等式。求定义域要过关,四项原则须注意。负数不能开平方,分母为零无意义。分数指数底正数,数零没有零次幂。限制条件不唯一,不等式组求解集。解一元一次不等式先去分母再括号,移项合并同类项。系数化“1”有讲究,同乘除负要变向。先去分母再括号,移项别忘要变号。同类各项去合并,系数化“1”注意了。同乘除正无妨碍,同乘除负也变号。解一元一次不等式组大于头来小于尾,大小不一中间找。大大小小没有解
22、,四种情况全来了。同向取两边,异向取中间。中间无元素,无解便出现。幼儿园小鬼当家,(同小相对取较小)敬老院以老为荣,(同大就要取较大)军营里没老没少。(大小小大就是它)大大小小解集空。(小小大大哪有哇)解一元二次不等式首先化成一般式,构造函数第二站。判别式值若非负,曲线横轴有交点。a正开口它向上,大于零则取两边。代数式若小于零,解集交点数之间。方程若无实数根,口上大零解为全。小于零将没有解,开口向下正相反。用平方差公式因式分解异号两个平方项,因式分解有办法。两底和乘两底差,分解结果就是它。用完全平方公式因式分解两平方项在两端,底积2倍在中部。同正两底和平方,全负和方相反数。分成两底差平方,方正
23、倍积要为负。两边为负中间正,底差平方相反数。一平方又一平方,底积2倍在中路。三正两底和平方,全负和方相反数。分成两底差平方,两端为正倍积负。两边若负中间正,底差平方相反数。用公式法解一元二次方程要用公式解方程,首先化成一般式。调整系数随其后,使其成为最简比。确定参数abc,计算方程判别式。判别式值与零比,有无实根便得知。有实根可套公式,没有实根要告之。用常规配方法解一元二次方程左未右已先分离,二系化“1”是其次。一系折半再平方,两边同加没问题。左边分解右合并,直接开方去解题。该种解法叫配方,解方程时多练习。用间接配方法解一元二次方程已知未知先分离,因式分解是其次。调整系数等互反,和差积套恒等式
24、。完全平方等常数,间接配方显优势【注】 恒等式解一元二次方程方程没有一次项,直接开方最理想。如果缺少常数项,因式分解没商量。b、c相等都为零,等根是零不要忘。b、c同时不为零,因式分解或配方,也可直接套公式,因题而异择良方。正比例函数的鉴别判断正比例函数,检验当分两步走。一量表示另一量, 有没有。若有再去看取值,全体实数都需要。区分正比例函数,衡量可分两步走。一量表示另一量, 是与否。若有还要看取值,全体实数都要有。正比例函数的图象与性质正比函数图直线,经过 和原点。K正一三负二四,变化趋势记心间。K正左低右边高,同大同小向爬山。K负左高右边低,一大另小下山峦。一次函数一次函数图直线,经过 点
25、。K正左低右边高,越走越高向爬山。K负左高右边低,越来越低很明显。K称斜率b截距,截距为零变正函。反比例函数反比函数双曲线,经过 点。K正一三负二四,两轴是它渐近线。K正左高右边低,一三象限滑下山。K负左低右边高,二四象限如爬山。二次函数二次方程零换y,二次函数便出现。全体实数定义域,图像叫做抛物线。抛物线有对称轴,两边单调正相反。A定开口及大小,线轴交点叫顶点。顶点非高即最低。上低下高很显眼。如果要画抛物线,平移也可去描点,提取配方定顶点,两条途径再挑选。列表描点后连线,平移规律记心间。左加右减括号内,号外上加下要减。二次方程零换y,就得到二次函数。图像叫做抛物线,定义域全体实数。A定开口及
26、大小,开口向上是正数。绝对值大开口小,开口向下A负数。抛物线有对称轴,增减特性可看图。线轴交点叫顶点,顶点纵标最值出。如果要画抛物线,描点平移两条路。提取配方定顶点,平移描点皆成图。列表描点后连线,三点大致定全图。若要平移也不难,先画基础抛物线,顶点移到新位置,开口大小随基础。【注】基础抛物线直线、射线与线段直线射线与线段,形状相似有关联。直线长短不确定,可向两方无限延。射线仅有一端点,反向延长成直线。线段定长两端点,双向延伸变直线。两点定线是共性,组成图形最常见。角一点出发两射线,组成图形叫做角。共线反向是平角,平角之半叫直角。平角两倍成周角,小于直角叫锐角。直平之间是钝角,平周之间叫优角。
27、互余两角和直角,和是平角互补角。一点出发两射线,组成图形叫做角。平角反向且共线,平角之半叫直角。平角两倍成周角,小于直角叫锐角。钝角界于直平间,平周之间叫优角。和为直角叫互余,互为补角和平角。证等积或比例线段等积或比例线段,多种途径可以证。证等积要改等比,对照图形看特征。共点共线线相交,平行截比把题证。三点定型十分像,想法来把相似证。图形明显不相似,等线段比替换证。换后结论能成立,原来命题即得证。实在不行用面积,射影角分线也成。只要学习肯登攀,手脑并用无不胜。解无理方程一无一有各一边,两无也要放两边。乘方根号无踪迹,方程可解无负担。两无一有相对难,两次乘方也好办。特殊情况去换元,得解验根是必然
28、。解分式方程先约后乘公分母,整式方程转化出。特殊情况可换元,去掉分母是出路。求得解后要验根,原留增舍别含糊。列方程解应用题列方程解应用题,审设列解双检答。审题弄清已未知,设元直间两办法。列表画图造方程,解方程时守章法。检验准且合题意,问求同一才作答。添加辅助线学习几何体会深,成败也许一线牵。分散条件要集中,常要添加辅助线。畏惧心理不要有,其次要把观念变。熟能生巧有规律,真知灼见靠实践。图中已知有中线,倍长中线把线连。旋转构造全等形,等线段角可代换。多条中线连中点,便可得到中位线。倘若知角平分线,既可两边作垂线。也可沿线去翻折,全等图形立呈现。角分线若加垂线,等腰三角形可见。角分线加平行线,等线
29、段角位置变。已知线段中垂线,连接两端等线段。辅助线必画虚线,便与原图联系看。两点间距离公式同轴两点求距离,大减小数就为之。与轴等距两个点,间距求法亦如此。平面任意两个点,横纵标差先求值。差方相加开平方,距离公式要牢记。矩形的判定任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。菱形的判定任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形。已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。学习细则理解数学概念数学概念是初中数学的基石,是数学的思维模式和方法载体。很多学生遇到的数学解题困难,追溯
30、根源,往往发现是由于他们在某个数学概念处产生了问题,致使解题受阻。概念属于理性认识,它的形成依赖于感性认识,学生的心理特点是容易理解和接受具体的感性认识。数学概念学习方法:在学习中要了解概念的发生与形成过程中,弄清概念之间的区别与联系,在头脑中形成相关概念的网络,以达到掌握并灵活运用的程度。学习数学新概念前,如果能让学生认知结构中原有的适当概念作一些结构上的变化来引进新概念,则有利于促进新概念的形成。对有些概念的教学,可以从实际出发,让孩子在操作中去发现概念的发生和发展过程。提高课上学习效率新知识的学习主要在课堂上进行,所以在学习课程中要重视课内的学习效率,寻求正确学习方法。提高课堂听讲效率的
31、秘诀,可概括成以下几个方面 :一是提前做好准备,这就要求同学提前做好预习;二是集中精力听讲,上课紧跟老师思路,抓住基础知识和课堂重点;三是要大胆发言,对问题要积极发言,锻炼自己表达能力的机会,不仅能检阅自己真正的水平,更能感受到成功的欣慰;四是做好笔记;最后,在每个阶段的学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成知识网络,纳入自己的知识体系。针对性做练习很多同学在学习数学的过程中非常的努力,也知道要做大量的习题,但是最后数学成绩提高的也不是很明显。这是为什么呢?我想很大程度上是由于同学所作的习题没有针对性,对于做题,我的观点是不仅要做题,还要做好题。26预防分化编辑造成分化的
32、原因1、被动学习 许多同学进初中入后,还像小学那样,有很强的依赖心理,跟随老师惯性运转,没有掌握学习主动权。表现在不定计划,坐等上课,课前没有预习,对老师要上课的内容不了解,上课忙于记笔记,没听到“门道”。2、学不得法 老师上课一般都要讲清知识的来龙去脉,剖析概念的内涵,分析重点难点,突出思想方法。而一部分同学上课没能专心听课,对要点没听到或听不全,笔记记了一大本,问题也有一大堆,课后又不能及时巩固、总结、寻找知识间的联系,只是赶做作业,乱套题型,对概念、法则、公式、定理一知半解,机械模仿,死记硬背。也有的晚上加班加点,白天无精打采,或是上课根本不听,自己另搞一套,结果是事倍功半,收效甚微。3
33、、不重视基础 一些“自我感觉良好”的同学,常轻视基本知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高鹜远,重“量”轻“质”,陷入题海。到正规作业或考试中不是演算出错就是中途“卡壳”。4、思维方式和学习方法不适应数学学习要求 初二阶段是数学学习分化最明显的阶段。一个重要原因是初中阶段数学课程对学生抽象逻辑思维能力要求有了明显提高。而初二学生正处于由直观形象思维为主向以抽象逻辑思维为主过渡的又一个关键期,没有形成比较成熟的抽象逻辑思维方式,而且学生个体差异也比较大,有的抽象逻辑思维能力发展快一些,有的则慢一些,因此表现出
34、数学学习接受能力的差异。除了年龄特征因素以外,更重要的是教师没有很好地根据学生的实际和教学要求去组织教学活动,指导学生掌握有效的学习方法,促进学生抽象逻辑思维的发展,提高学习能力和学习适应性。教学对策1、培养学生学习数学的兴趣 兴趣是推动学生学习的动力,学生如果能在学习数学中产生兴趣,就会形成较强的求知欲,就能积极主动地学习。培养学生数学学习兴趣的途径很多,如让学生积极参与教学活动,并让其体验到成功的愉悦;创设一个适度的学习竞赛环境;发挥趣味数学的作用;提高教师自身的教学艺术等等。2、教会学生学习 (1)加强学法指导,培养良好学习习惯反复使用的方法将变成人们的习惯行为。什么是良好的学习习惯?我
35、向学生做了如下具体解释,它包括制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面。(2)制定计划使学习目的明确,时间安排合理,不慌不忙,稳扎稳打,它是推动学生主动学习和克服困难的内在动力。但计划一定要切实可行,既有长远打算,又有短期安排,执行过程中严格要求自己,磨炼学习意志。(3)课前自学是学生上好新课,取得较好学习效果的基础。课前自学不仅能培养自学能力,而且能提高学习新课的兴趣,掌握学习主动权。自学不能搞走过场,要讲究质量,力争在课前把教材弄懂,上课着重听老师讲课的思路,把握重点,突破难点,尽可能把问题解决在课堂上。(4)上课是理解和掌握基本知识、基本技能和基本方法的关键环节。“学然后知不足”,课前自学过的同学上课更能专心听课,他们知道什么地方该详,什么地方可略;什么地方该精雕细刻,什么地方可以一带而过,该记的地方才记下来,而不是全抄全录,顾此失彼。(5)及时复习是高效率学习的重要一环,通过反复阅读教材,多方查阅有关资料,强化对基本概念知识体系的理解与记忆,将所学的新知识与有关旧知识联系起来,进行分析比较,一边复习一边将复习成果整理在笔记上,使对所学的新知识由“懂”到“会”。(6)独立作业是学生通过自己的独立思考,灵活地分析问题、解决问题,进一步加深对所学新知识的理解和对新技能的掌握过程。这一过程是对学生意志毅力的考验,通过运用使学