收藏 分销(赏)

《线段垂直平分线的性质》教学策略.doc

上传人:仙人****88 文档编号:5972870 上传时间:2024-11-24 格式:DOC 页数:3 大小:128.50KB
下载 相关 举报
《线段垂直平分线的性质》教学策略.doc_第1页
第1页 / 共3页
《线段垂直平分线的性质》教学策略.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
《线段垂直平分线的性质》教学策略 虹桥二中 戴蓉蓉 教学目标:了解两个图形成轴对称性的性质,了解轴对称图形的性质. 探究线段垂直平分线的性质 经历探索轴对称图形性质的过程,进一步体验轴对称的特点,发展空间观察 教学重点:轴对称的性质 教学难点:线段垂直平分线的性质 教学方法与手段:采用“情境──探究”的方法 教学过程: 一.创设情境,引入新课 上节课我们共同探讨了轴对称图形,知道现实生活中由于有轴对称图形,而使得世界非常美丽.那么大家想一想,什么样的图形是轴对称图形呢? 今天继续来研究轴对称的性质. 二.导入新课 观看投影并思考. 如图,△ABC和△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,线段AA′、BB′、CC′与直线MN有什么关系? 图中A、A′是对称点,AA′与MN垂直,BB′和CC′也与MN垂直. AA′、BB′和CC′与MN除了垂直以外还有什么关系吗? △ ABC与△A′B′C′关于直线MN对称,点A′、B′、C′分别是点A、B、C的对称点,设AA′交对称轴MN于点P,将△ABC和△A′B′C′沿MN对折后,点A与A′重合,于是有AP=A′P,∠MPA=∠MPA′=90°.所以AA′、BB′和CC′与MN除了垂直以外,MN还经过线段AA′、BB′和CC′的中点. 对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段.我们把经过线段中点并且垂直于这条线段的直线,叫做这条线段的垂直平分线. 自己动手画一个轴对称图形,并找出两对称点,看一下对称轴和两对称点连线的关系. 我们可以看出轴对称图形与两个图形关于直线对称一样,对称轴所在直线经过对称点所连线段的中点,并且垂直于这条线段. 归纳图形轴对称的性质: 如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线. 下面我们来探究线段垂直平分线的性质. [探究1] 如下图.木条L与AB钉在一起,L垂直平分AB,P1,P2,P3,…是L上的点,分别量一量点P1,P2,P3,…到A与B的距离,你有什么发现? 1.用平面图将上述问题进行转化,先作出线段AB,过AB中点作AB的垂直平分线L,在L上取P1、P2、P3…,连结AP1、AP2、BP1、BP2、CP1、CP2… 2.作好图后,用直尺量出AP1、AP2、BP1、BP2、CP1、CP2…讨论发现什么样的规律. 探究结果: 线段垂直平分线上的点与这条线段两个端点的距离相等.即AP1=BP1,AP2=BP2,… 证明. 证法一:利用判定两个三角形全等. 如下图,在△APC和△BPC中, △APC≌△BPC PA=PB. 证法二:利用轴对称性质. 由于点C是线段AB的中点,将线段AB沿直线L对折,线段PA与PB是重 合的,因此它们也是相等的. 带着探究1的结论我们来看下面的问题. [探究2] 如右图.用一根木棒和一根弹性均匀的橡皮筋,做一个简易的“弓”,“箭”通过木棒中央的孔射出去,怎么才能保持出箭的方向与木棒垂直呢?为什么? 活动: 1.用平面图形将上述问题进行转化.作线段AB,取其中点P,过P作L,在L上取点P1、P2,连结AP1、AP2、BP1、BP2.会有以下两种可能. 2.讨论:要使L与AB垂直,AP1、AP2、BP1、BP2应满足什么条件? 探究过程: 1.如上图甲,若AP1≠BP1,那么沿L将图形折叠后,A与B不可能重合,也就是∠APP1≠∠BPP1,即L与AB不垂直. 2.如上图乙,若AP1=BP1,那么沿L将图形折叠后,A与B恰好重合,就有∠APP1=∠BPP1,即L与AB重合.当AP2=BP2时,亦然. 探究结论: 与一条线段两个端点距离相等的点,在这条线段的垂直平分线上. [师]上述探究问题的结果就给出了线段垂直平分线的性质,即:线段垂直平分线上的点与这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上.所以线段的垂直平分线可以看成是与线段两端点距离相等的所有点的集合. 三.随堂练习 课本P62练习 1、2. 教师小结: 这节课通过探索轴对称图形对称性的过程,了解了线段的垂直平分线的有关性质,同学们应灵活运用这些性质来解决问题. 作业:课本习题13.1─4、5题 板书设计: 13.1.2线段垂直平分线的性质 一、复习:轴对称图形. 二、线段垂直平分线的定义:经过线段中点并且垂直于这条线段的直线,叫做线段的垂直平分线. 三、图形轴对称的性质:如果两个图形关于某条直线对称,那么对称轴是任何一对对称点所连线段的垂直平分线.类似地,轴对称图形的对称轴是任何一对对称点所连线段的垂直平分线. 四、线段垂直平分线的性质:线段垂直平分线的点到这条线段两个端点的距离相等;反过来,与这条线段两个端点距离相等的点都在它的垂直平分线上
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服