资源描述
《坐标方法简单应用》教学设计
教学目标
1、了解坐标平面内,平移点的坐标变化.
2、 会写出平移变化后点的坐标.
3、由点的坐标变化,能判断点的平移情况.
教学重点
用坐标表示点的方法,点坐标平移的变化规律.
教学难点
根据已知条件,建立适当的坐标系,通过平移确定点坐标的变化.
教学过程
一、导入新课
上节课我们学习了用坐标表示地理位置,本节课我们继续研究坐标方法的另一个应用.
二、新课教学
探究:(1)如下图将点A(-2,-3)向右平移5个单位长度,得到点A1,在图上标出它的坐标,把点A向上平移4个单位长度呢?
(2)把点A向左或向下平移4个单位长度,观察他们的变化,你能从中发现什么规律吗?
(3)再找几个点,对他们进行平移,观察他们的坐标是否按你发现的规律变化?
规律:一般地,在平面直角坐标系中,将点(x,y)向右(或左)平移 A 个单位长度,可以得到对应点(x+A,y)(或(x-A,y));将点(x,y)向上(或下)平移 b 个单位长度,可以得到对应点(x,y+b)(或(x,y-b)).
教师说明:对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;反过来,从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
三、实例探究
例1 如下图,三角形ABC三个顶点的坐标分别是 A(4,3),B(3,1),C(1,2).
(1)将三角形ABC三个顶点的横坐标都减去6,纵坐标不变,分别得到点 A1,B1,C1,依次连接 A1 , B1,C1各点,所得三角形A1B1C1与三角形ABC的大小、形状和位置有什么关系?
(2)将三角形ABC三个顶点的纵坐标都减去5,横坐标不变,分别得到点A2,B2,C2 ,依次连接A2,B2,C2 各点,所得三角形A2B2C2 与三角形ABC的大小、形状和位置有什么关系?
引导学生动手操作,按要求画出图形后,解答此例题.
解:如图(2),所得三角形A1B1C1 与三角形ABC的大小、形状完全相同,三角形A1B1C1 可以看作将三角形 ABC 向左平移6个单位长度得到.类似地,三角形 A2B2C2 与三角形ABC的大小、形状完全相同,它可以看作将三角形 ABC 向下平移 5 个单位长度得到.
思考:(1)如果将这个问题中的“横坐标都减去6”“纵坐标都减去5”相应地变为“横坐标都加3” “纵坐标都加2”,分别能得出什么结论?画出得到的图形.
(2)如果将三角形ABC三个顶点的横坐标都减去6,同时纵坐标都减去5,能得到什么结论?画出得到的图形.
归纳上面的作图与分析,你能得到什么结论?
一般地,在平面直角坐标系内,如果把一个图形各个点的横坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向右(或向左)平移 a 个单位长度;如果把它各个点的纵坐标都加(或减去)一个正数 a,相应的新图形就是把原图形向上(或向下)平移 a个单位长度.
例2,如图,正方形ABCD四个顶点的坐标分别是A(-2,4),B(-2,3),C(-1,3),D(-1,4),将正方形ABCD向下平移7个单位长度,再向右平移8个单位长度,两次平移后四个顶点相应变为点E,F,G,H.
(1)点E,F,G,H的坐标分别是什么?
(2)如果直接平移正方形ABCD,使点A移到点E,它和我们前面得到的正方形位置相同吗?
让学生先自己做,做完师生互动。
四、课堂小结
对一个图形进行平移,这个图形上所有点的坐标都要发生相应的变化;从图形上的点的坐标的某种变化,我们也可以看出对这个图形进行了怎样的平移.
五、布置作业
教材P78、P79习题7.2第3、8 题.
教学反思
本节课是在学生学习了位置平移的概念和性质的基础上进行的,主要是引导学生运用分类思想,依次经过点或图形平移的观察、画图、比较、推理、归纳等活动,最终探索出点的坐标变化与点平移的关系;通过图形各个点的坐标变化与图形平移的关系,体验坐标这种数的形式与平移这种图形的形式之间的互相联系。
教材内容进行了优化处理,密切联系新旧知识,让学生借助已有的知识和方法主动探索新知识,扩大知识结构,发展能力,完善人格,从而使课堂教学真正落实到学生的发展上,体现了以老师为主导,学生为主题,以思想为导向,知识为载体,以方法了中介、训练为主干,以培养学生的思维能力为中心的教学理念。通过设置以上情境,引导学生探索、实践、观察、猜想,最终得出结论,符合教育心理学指出的“感觉-知觉-记忆-思维-想象”的认知规律。
《坐标方法简单应用》教学设计与反思
大庄乡中心学校
冶仙英
二〇一四年五月二十日
展开阅读全文