1、新人教版四年级下册数学鸡兔同笼教学设计【教材分析】“鸡兔同笼”问题是我国民间广为流传的数学趣题,它在培养学生逻辑推理能力的同时使学生体会代数方法的一般性。解决这类问题时,教材展示了学生逐步解决问题的过程。“假设法”有利于培养学生的逻辑推理能力,列方程则有助于学生体会代数方法的一般性。因此在解决“鸡兔同笼”问题时,学生选用哪种方法均可,不强求用某一种方法。【学情分析】(1)“鸡兔同笼”问题是我国古代著名数学趣题,容易激发学生的探究兴趣。(2)列方程解答此类问题数量关系直观易懂,要加以提倡。(3)“假设法”对学生来说比较陌生,教学中要抓住其特点,讲解算理,让学生逐步掌握,根据具体问题引导学生分析理
2、解,拓宽学生思维。【教学目标】:1、了解“鸡兔同笼”问题,感受古代数学问题的趣味性。2、尝试用不同的方法解决“鸡兔同笼”问题并使学生体会代数方法的一般性。3、在解决问题的过程中培养学生的逻辑推理能力。【教学重点】:理解并掌握用假设法和列方程法解决“鸡兔同笼”问题。【教学难点】:理解用假设法的算理并能运用不同的方法解决实际问题。【教学过程】:一、历史激趣,导入新课今天老师想给同学们介绍一部1500年前的数学名著孙子算经,你们想了解吗?里面记载着许多有趣的数学名题,其中有这样一道题请看:(课件出示以下情境图)师:你能说说这道题是什么意思吗?(说明:雉指鸡)出示:笼子里有若干只鸡和兔。从上面数,有3
3、5个头,从下面数,有94只脚,鸡和兔各有几只?这就是我们今天要研究的历史趣题“鸡兔同笼”的问题。(板书课题)结合课件谈话引入,给数学课堂带来了浓厚的文化气息,让我们的学生感受到我国数学文化的源远流长,激发了学生的学习热情二、探究交流,尝试解决问题。1.为了研究方便,我们把题目里的数字改小一点。“笼子里有若干只鸡和兔,从上面数,有8个头;从下面数,有26条腿。鸡和兔各有几只?”(说明:为了便于分析时叙述,把“26只脚”改成了“26条腿”课件出示)2.我们一起来看看被关在同一个笼子里的鸡和兔给我们带来了哪些数学信息?让学生理解:鸡和兔共8只。鸡和兔共有26条腿。鸡有2条腿。 兔有4条腿。(课件出示
4、)3、我们先来猜猜,笼子中可能会有几只鸡几只兔呢?学生猜测,在猜测时要抓住哪个条件呢?(鸡和兔一共是8只)那是不是抓住了这个条件就一定能猜对呢?学生猜测,老师板书4、怎样才能确定你们猜测的结果对不对?(把鸡的腿和兔的腿加起来看等不等于26。)(一)、尝试列表法为了研究老师把所有的可能按顺序列出来了,我们先看表格中左起的第一列,8和0是什么意思?(就是有8只鸡和0只兔,也就是假设笼子里全是鸡,)那笼子里是不是全是鸡呢?(不是)那就是把里面的兔也看成鸡来计算了,那把一只4条腿的兔当成一只2条腿的鸡来算会有什么结果呢?(就会少算两条腿)(课件出示:把一只兔当成一只鸡算,就少了两条腿。)(二)、假设法
5、1、假设全是鸡82=16(条)(如果把兔全当成鸡一共就有8*2=16条腿)26-16=10(条)(把兔看成鸡(来算,4条腿兔有当成两条腿的鸡算,每只兔就少了两条腿,10条腿是少算了兔的腿)4-2=2(假设全是鸡,是把4条腿的兔有当成两条腿的鸡。所以4-2表示是一只兔当成一只鸡就要少算2条腿。)102=5(只)兔(那把多少只兔当成鸡算就会少10条腿呢?就看10里面有几个2就是把几只兔当成了鸡来算,所以102=5就是兔的只数。)8-5=3(只)鸡(用鸡兔的总只数减去兔的只数就是鸡的只数,8-5=3只鸡)算出来后,我们还要检验算的对不对,谁愿意口头检验。2、假设全是兔我们再回到表格中,看看右起第一列
6、中的0和8是什么意思?(笼子里全是兔)那是不是全都是兔呢?(不是)也就是假设笼子里全是兔。那把兔当了鸡在算。那就是把里面的鸡也当成兔来计算了,那把一只2条腿的鸡当成一只4条腿的兔来算会有什么结果呢?(就会多算两条腿)(课件出示:把一只鸡当成一只兔算,就多了两条腿)先用假设全是鸡的办法解决了这个问题,现在假设全是兔又应该怎么分析和解决这个问题呢?同学们能自己解决吗?如果有困难可以同桌边或小组讨论。小结:刚才我们假设都是鸡或都是兔,所以把这种方法叫做假设法。这种方法能化难为易,是解答鸡兔同笼问题的一种基本方法。(板书:假设法)5、阅读材料三、练习巩固,反思提升。四、总结:本节课你有什么收获?鸡兔同
7、笼教学设计人教版【教学目标】1、知识与技能初步认识鸡兔同笼的数学趣题,了解有关的数学史。能用列表法和画图法解决相关的实际问题,结合图解法理解假设的方法解决鸡兔同笼问题。2、过程与方法通过画图分析、列表举例、假设计算等方法理解数量关系,体会数形结合的方便性,体验解决问题方法的多样化,提高解决实际问题的能力。3、情感、态度与价值观培养学生的合作意识,在现实情景中,在交流的过程中,使学生感受到数学思想方法的运用与解决实际问题的联系,提高学生解决问题的能力和自信心,受到多种数学思想方法的熏陶,进而让学生体会数学的价值。【教学重点】用画图法和列表法解决相关的实际问题。【教学难点】体会解决问题策略的多样化
8、,培养学生分析问题、解决问题的能力。【教学准备】课件。【教学流程】(一)问题引入,揭示课题。师:(出示主题图)大约在1500年前,孙子算经中记载了这样一个有趣的问题。书中说:“今有雉(野鸡)兔同笼,上有三十五头,下有九十四足,问雉兔各几何?”问:这段话是什么意思?谁能说说?(生试说)师:这段话意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。问笼中鸡和兔各有几只?这就是我们通常所说的鸡兔同笼问题,如何解决这个1500年前古人提出的数学问题,就是我们这节课要研究的内容。(板书课题:鸡兔同笼问题)(二)主动探究、合作交流、学习新知。师:说明为了研究方便,我们先将题目的
9、条件做一个简化。(课件出示)例1:鸡兔同笼,有8个头,26条腿,鸡、兔各有几只?师:同学们先讨论一下,看能不能给大家提供一种或几种解这道题的思路,让其它的同学能很容易就理解、弄懂这道题。(学生讨论)学生初步交流,教师提炼:可以用画图法、列表法、假设的方法。师:请同学们先认真思考,以小组为单位展开讨论、交流,看看你们小组该选择什么方法来解决这个问题?再把你们的想法,你的思考过程用你自己的方式记录下来。学生思考、分析、探索,接下来小组讨论、交流。小组活动充分后进入小组汇报、集体交流阶段。师:谁能说一说你们小组探究的过程,你们是怎样得出结论的?鸡兔各有几只?学生汇报探究的方法和结论:1、 画图法:给
10、每只动物先画上2条腿(也就是都看成鸡),这样一共用16条腿,还剩下10条腿。一次增加2条腿,一只鸡就变成了一只兔,要把10条画完,要把5只鸡变成兔。总结:画图的方法非常便于观察、非常容易理解。2、列表法:(展示学生所列表格)学生说明列表的方法及步骤:学生汇报:我们先假设有8只鸡这样一共就有16条腿,显然不对,再减去一只鸡,加上一个兔,这样一个一个地试,把结果列成表格,最后得出3只鸡、5只兔。师:同学们的探索精神和方法都很好,都能用自己的方法成功地解决“鸡兔同笼问题”。不过上面的两种方法,老师还是觉得比较麻烦,又是画图,又是列表的,有没有更方便简洁的方法来解决这个问题?3、假设法:(随学生能否出
11、现此种情况作为机动出示)教师引导:观察上面的表格我们发现。如果8只都是鸡,则一共只有16条腿这样就比26条腿少10条腿,这是因为实际每只兔子比每只鸡多2条腿。一共多了10条腿,于是兔就有102=5(只),所以我们还可以这样去想:板书:方法一:假设8只都是鸡,那么兔有:(26-82)(4-2)=5(只)鸡有8-5=3(只)同样如果8只都是兔,则一共只有32条腿这样就比26条腿多6条腿,这是因为实际每只鸡比每只兔子少2条腿。一共多了6条腿,于是鸡就有62=3(只),所以我们还可以这样去想:板书:方法二:假设8只都是兔,那么鸡有:(48-26)(4-2)=3(只)兔有8-3=5(只)小结方法:刚才我
12、们用这么多的方法解决了鸡兔同笼问题,你最喜欢哪一种方法,说说你的理由。现在我们重新总结一下这些方法:数目比较小时,用画图和列表的方法比较快,数目比较大时,用假设法比较好。(三)解决实际问题、课堂延伸。1尝试解答课前提出的古代孙子算经中记载的鸡兔同笼问题。书中说:“今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?看看我国古人是怎么解这个题的。2、自行车和三轮车共10辆,总共有26个轮子。自行车和三轮车各有多少辆?(四)课堂小结:通过今天的学习,你有哪些收获?师总结:这节课,我们一起用画图法、列表法和假设法解决了我国古代著名的“鸡兔同笼”问题。其实在1500年以来,我们中国历代的数学家都在不断的研究和探索这个问题,也得出了许多的解决“鸡兔同笼”问题的方法,而且从中得到了很多的数学思想。希望同学们在今后的学习中,善于思考,善于发现,善于总结方法。