收藏 分销(赏)

正弦定理、余弦定理的应用.doc

上传人:仙人****88 文档编号:5877630 上传时间:2024-11-22 格式:DOC 页数:3 大小:215KB
下载 相关 举报
正弦定理、余弦定理的应用.doc_第1页
第1页 / 共3页
正弦定理、余弦定理的应用.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
课题: 正弦定理、余弦定理的应用 教学目标: 1会在各种应用问题中,抽象或构造出三角形,标出已知量、未知量,确定解三角形的方法;2搞清利用解斜三角形可解决的各类应用问题的基本图形和基本等量关系; 3理解各种应用问题中的有关名词、术语,如:坡度、俯角、仰角、方向角、方位角等; 4通过解三角形的应用的学习,提高解决实际问题的能力 教学重点:实际问题向数学问题的转化及解斜三角形的方法 教学难点:实际问题向数学问题转化思路的确定 授课类型:新授课 课时安排:1课时 教 具:powerpoint与三角板 教学过程: 一.复习回顾: 1.正弦定理: 2.余弦定理: , 3.解三角形的知识在测量、航海、几何、物理学等方面都有非常广泛的应用,如果我们抽去每个应用题中与生产生活实际所联系的外壳,就暴露出解三角形问题的本质,这就要提高分析问题和解决问题的能力及化实际问题为抽象的数学问题的能力下面,我们将举例来说明解斜三角形在实际中的一些应用 二、讲解范例: 例1:如图,从A点和B点测得上海东方明珠电视塔顶C的仰角分别为和(A,B两点与塔底D点在同一直线上),, 求东方明珠电视塔的高度(精确到1m). 例2:某渔船在航行中不幸遇险,发出求救信号,我海军舰艇在A处获悉后,立即测出该渔船在方位角为45°、距离A为10海里的C处,并测得渔船正沿方位角为105°的方向,以9海里/h的速度向某小岛B靠拢,我海军舰艇立即以21海里/h的速度前去营救,试问舰艇应按照怎样的航向前进?并求出靠近渔船所用的时间 分析:设舰艇从A处靠近渔船所用的时间为x h,则利用余弦定理建立方程来解决较好,因为如图中的∠1,∠2可以求出,而AC已知,BC、AB均可用x表示,故可看成是一个已知两边夹角求第三边问题 解:设舰艇从A处靠近渔船所用的时间为xh,则AB=21x海里,BC=9x 海里,AC=10 海里,∠ACB=∠1+∠2=45°+(180°-105°)=120°, 根据余弦定理,可得 AB2=AC2+BC2-2AC·BC·cos120°得 (21x)2=102+(9x)2-2×10×9xcos120°, 即36x2-9x2×10=0 解得x1=,x2=- (舍去) ∴AB=21x=14,BC=9x=6 再由余弦定理可得 cos∠BAC= ∴∠BAC=21°47′,45°+21°47′=66°47′ 所以舰艇方位角为66°47′,小时即40分钟 答:舰艇应以66°47′的方位角方向航行,靠近渔船则需要40分钟 评述:解好本题需明确“方位角”这一概念,方位角是指由正北方向顺时针旋转到目标方向线的水平角,其范围是(0°,360°) 在利用余弦定理建立方程求出x后,所求舰艇方位角就转化为一个已知三边求角的问题,故仍然利余弦定理 例3:如图所示,已知半圆的直径AB=2,点C在AB的延长线上,BC=1,点P为半圆上的一个动点,以DC为边作等边△PCD,且点D与圆心O分别在PC的两侧,求四边形OPDC面积的最大值 分析:要求四边形OPDC面积的最大值,这首先需要建立一个面积函数,问题是选谁作为自变量,注意到动点P在半圆上运动与∠POB大小变化之间的联系,自然引入∠POB=θ作为自变量建立函数关系四边形OPDC可以分成△OPC与等边△PDC,S△OPC可用·OP·OC·sinθ表示,而等边△PDC的面积关键在于边长求解,而边长PC可以在△POC中利用余弦定理表示,至于面积最值的获得,则通过三角函数知识解决 解:设∠POB=θ,四边形面积为y,则在△POC中,由余弦定理得: PC2=OP2+OC2-2OP·OCcosθ=5-4cosθ ∴y=S△OPC+S△PCD=+(5-4cosθ) =2sin(θ-)+ ∴当θ-=即θ=时,ymax=2+ 评述:本题中余弦定理为表示△PCD的面积,从而为表示四边形OPDC面积提供了可能,可见正、余弦定理不仅是解三角形的依据,一般地也是分析几何量之间关系的重要公式,要认识到这两个定理的重要性 另外,在求三角函数最值时,涉及到两角和正弦公式sin(α+β)=sinαcosβ+cosαsinβ的构造及逆用,应要求学生予以重视 三.小结 通过本节学习,要求大家在了解解斜三角形知识在实际中的应用的同时,掌握由实际问题向数学问题的转化,并提高解三角形问题及实际应用题的能力 四.教后感 通过本节学习,学生应达到以下学习目标:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理,余弦定理,并能解决一些简单的三角形度量问题;(2)能够熟练运用正弦定理,余弦定理等知识和方法解决一些与测量和几何计算有关的生活实际问题。 学生通过学习,对正弦定理,余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。 教学中对图像的处理可以做出动画,让学生更加直观的感受图像之间的关系.
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 小学其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服