收藏 分销(赏)

二次函数知识结构复习.doc

上传人:仙人****88 文档编号:5871078 上传时间:2024-11-22 格式:DOC 页数:9 大小:322.50KB
下载 相关 举报
二次函数知识结构复习.doc_第1页
第1页 / 共9页
二次函数知识结构复习.doc_第2页
第2页 / 共9页
二次函数知识结构复习.doc_第3页
第3页 / 共9页
二次函数知识结构复习.doc_第4页
第4页 / 共9页
二次函数知识结构复习.doc_第5页
第5页 / 共9页
点击查看更多>>
资源描述

1、考点1.二次函数图象的对称轴和顶点坐标二次函数的图象是一条抛物线,它的对称轴是直线x=-,顶点坐标是(-,).例1 已知,在同一直角坐标系中,反比例函数与二次函数的图像交于点(1)求、的值;(2)求二次函数图像的对称轴和顶点坐标. 分析:要求m的值只要将点A(-1,m)的坐标代入y=即可.要求c的值,则只要把点A的坐标代入y=-x2+2x+c即可.求二次函数图象的对称轴和顶点坐标,可以直接代入计算公式,也可以利用配方法进行计算.解答:(1)把x=1,y=m代入y=,得m=-5,所以点A的坐标为(-1,-5).把x=-1,y=-5代入y=-x2+2x+c,得c=-2.(2)因为y=-x2+2x-

2、2=-(x-1)2-1,所以二次函数的对称轴是直线x=1,顶点坐标是(1,-1).点评:本题主要涉及二次函数图象的对称轴和顶点坐标的计算,解决问题的方法有两种,可根据表达式的特点灵活选择计算方法.考点2.抛物线与a、b、c的关系yxO 图1抛物线y=ax2+bx+c中,当a0时,开口向上,在对称轴x=-的左侧y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;当a0时,开口向下,在对称轴的右侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小.例2 已知的图象如图1所示,则的图象一定过( )A第一、二、三象限B第一、二、四象限C第二、三、四象限D第一、三、四象限分析:通过观察图象可以

3、知道a喝b的符号,从而可以判断出y=ax-b的图象一定过的象限.解:由图,可知a0,b0.y=ax-b的图象一定经过第二、三、四象限.应选C.点评:求解本题时,一定要认真分析题目提供的图象,从图像中捕捉对求解有用的信息.考点3.二次函数的平移当k0(k0(h0,x2-1=0有两个不相等的实数根,抛物线与x轴有两个交点.故选B. 图2点评:二次函数中,当涉及到图象与坐标轴的交点时,注意要考虑与一元二次方程的联系.专项练习三1.抛物线y=kx2-7x-7的图象和x轴有交点,则k的取值范围是_.2.已知二次函数的部分图象如图2所示,则关于的一元二次方程的解为 图33.已知函数的图象如图3所示,那么关

4、于的方程 的根的情况是( )A.无实数根B.有两个相等实数根C.有两个异号实数根D.有两个同号不等实数根4. 二次函数的图象如图4所示,根据图象解答下列问题:图4(1)写出方程的两个根(2)写出不等式的解集(3)写出随的增大而减小的自变量的取值范围(4)若方程有两个不相等的实数根,求的取值范围专题四:利用二次函数解决实际问题本专题主要涉及从实际问题中建立二次函数模型,根据二次函数的最值解决实际问题,能根据图象学习建立二次函数模型解决实际问题.解决实际问题的基本思路:(1)理解问题;(2)分析问题中的变量和常量;(3)用函数表达式表示出它们之间的关系;(4)利用二次函数的有关性质进行求解;(5)

5、检验结果的合理性,对问题加以拓展等.例 某商场将进价为2000元的冰箱以2400元售出,平均每天能售出8台,为了配合国家“家电下乡”政策的实施,商场决定采取适当的降价措施.调查表明:这种冰箱的售价每降低50元,平均每天就能多售出4台(1)假设每台冰箱降价x元,商场每天销售这种冰箱的利润是y元,请写出y与x之间的函数表达式;(不要求写自变量的取值范围)(2)商场要想在这种冰箱销售中每天盈利4800元,同时又要使百姓得到实惠,每台冰箱应降价多少元?(3)每台冰箱降价多少元时,商场每天销售这种冰箱的利润最高?最高利润是多少?分析:首先利用利润=(销售单价-成本)销售量这个公式算术y与x的关系;再解一

6、元二次方程;最后利用二次函数的性质求出最大值即可.解:(1)根据题意,得,即 (2)由题意,得整理,得 解这个方程,得 要使百姓得到实惠,取所以,每台冰箱应降价200元 (3)对于,当时, 所以,每台冰箱的售价降价150元时,商场的利润最大,最大利润是5000元点评:本题是一道构建二次函数解决实际问题的决策题,是中考的重要考点.对于第(3)小题的最大利润问题,除了用顶点公式来确定答案外,也可以利用配方法将二次函数的表达式化成顶点式.专题训练四1.小李想用篱笆围成一个周长为60米的矩形场地,矩形面积S(单位:平方米)随矩形一边长x(单位:米)的变化而变化(1)求S与x之间的函数关系式,并写出自变量x的取值范围;(2)当x是多少时,矩形场地面积S最大?最大面积是多少?2.某旅行社有客房120间,每间客房的日租金为50元,每天都客满.旅社装修后要提高租金,经市场调查发现,如果每间客房的日租金每增加5元时,则客房每天出租数就会减少6间,不考虑其他因素,旅社将每间客房的日租金提高到多少元时,客房日租金的总收入最高?

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服